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Abstract

Ultrahigh toughness cementitious composites are a kind of high-performance cementitious material with a

characteristic of ductile fracture. Based on the continuum damage mechanics theory and flexural fatigue

damage model, two damage propagation models of ultrahigh toughness cementitious composites are built.

One is a linear bilogarithmic model with J-integral range as its independent variable, while the other one is

a linear model on a semilogarithmic scale with fatigue stress level as its independent variable. However,

according to former research, the J-integral depends strongly on specimens’ geometry, so the first damage

propagation model is deeply influenced by material dimension. As a result, the second damage propagation

model is more convenient in application, shows the material fatigue property in comparison with the first

model. In order to prove these two models and obtain the parameters, a three-point flexural fatigue

experiment on single-edge-notched fracture specimens is carried out. The results shows that the two

models fit better with the experimental results, rather than the crack propagation law of ultrahigh

toughness cementitious composites.

Keywords

Ultrahigh toughness cementitious composites, ductile fracture, damage propagation model, J-integral,

stress level

Introduction

Ultrahigh toughness cementitious composites (UHTCC), which has another name as engineering
cementitious composites (ECC), is a kind of short fiber reinforced cementitious composites.
This material has the characteristics of pseudo strain hardening and multiple cracking under uniaxial
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tensile load. Different from concrete’s quasi-brittle fracture, ‘‘ductile fracture’’ happens for UHTCC
(Li and Hashida, 1993). The total composite fracture energy can be divided into two parts: an off-
crack-plane matrix-cracking component and an on-crack-plane fiber-bridging component. Maalej
et al. (1995) took an experimental study on the effect of fiber volume fraction on the off-crack-plane
fracture energy of ECC. The results showed that the off-crack-plane fracture energy increased with
fiber volume fractions in a logarithmic fashion, and it exceeded the bridging fracture energy pro-
duced on the main fracture plane. Kabele and Horii proposed a simple analytical model for fracture
analysis of ECC. In their research, ECC was idealized as a homogeneous and continuous, while a
discrete crack model was applied for localized cracks (Kabele and Horii, 1996). Kabele and Li (1998)
emphasized the off-crack-plane fracture energy and calculated the composite fracture energy of ECC
with a finite element analysis on crack growth under small-scale yielding conditions. These above
investigations are all based on the J-integral approach in nonlinear fracture mechanics. However,
this approach has some limitations though it is widely applied in industry and engineering fields
(Besson, 2010; Rice, 1968). For example, the J-integral is not a material intrinsic parameter because
that it strongly depends on specimen’s geometry (Sumpter and Forbes, 1992). Then, there is another
approach called ‘‘Local Approach to Fracture,’’ which is based on continuum damage mechanics
(CDM). Many works have been devoted to investigate the damage fracture behavior of ductile solids
since the CDM method was first introduced to solve the creep problem by Kachanov (1958). In the
late 1980s, some researchers extended the damage concept for ductile plasticity (Ju, 1989; Lemaitre,
1984; Simo and Ju, 1987a, 1987b). Various isotropic and anisotropic damage models for ductile
fracture in metal materials were built (Bonora, 1997; Chanderakanth and Pandey, 1995; Chow and
Wang, 1987; Lemaitre, 1985; Tai and Yang, 1986, 1987; Wang, 1992a, 1992b). Besides, damage
mechanics was also applied to predict the fatigue life of metal materials (Chaboche, 1998a, 1998b).

Based on nonlinear fracture mechanics, the authors introduced a double J-integral criter-
ion to calculate the fracture energy of UHTCC (Liu et al., 2012). The JR resistance curve could
be used to evaluate the cracking state. According to this double J fracture model, a fatigue crack
propagation law of UHTCC was built, which was similar to Paris law. This crack propagation law
was expressed with the two parameters as J-integral and crack covering area (Xu and Liu, 2012).
The fatigue property of UHTCC was also investigated, with an introduced flexural fatigue damage
model on basis of CDM (Xu et al., 2013). Furthermore, on the base of these fracture and fatigue
models, the damage property of UHTCC-concrete composite beam under flexural fatigue was
researched (Liu et al., 2013). However, these investigations before mostly focused on the fracture
energy of UHTCC. In this study, the CDM method is applied to analyze the damage propagation
law during the fracture fatigue process of UHTCC. The damage propagation models are built, while a
three-point flexural test on single-edge-notched fracture specimens is taken to calculate the parameters.

Continuum damage model for UHTCC fracture

Fatigue damage model of UHTCC

The fatigue damage model in this paper is constructed according to Chaboche fatigue damage model
(Chaboche, 1981), as follows

@D

@N
¼ ½1� ð1�DÞ1þ���ðSm,SÞ Sa

MðSmÞð1�DÞ

� ��
ð1Þ
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where Sm ¼ �m=�u ¼ ð�max þ �minÞ=2�u, Sa ¼ �a=�u, while �max and �min are the maximum and
minimum load during a fatigue cycle, �a and �m are the amplitude and the mean value of the fatigue
stresses, �u is the ultimate static strength. D represents the fatigue damage; N is the number of load
cycles; � is a material constant; �ðSm,SÞ and MðSmÞ are material functions determined by the shape
of fatigue load. It is assumed that the fatigue damage begins to develop in the first load cycle,
equation (1) is integrated with D ¼ 0 � 1 and N ¼ 0 � NF, that is

NFðSm,SÞ ¼
1

ð1� �Þð1þ �Þ

Sa

MðSmÞ

� ���
ð2Þ

D ¼ 1� 1�
N

NF

� � 1
1��

" # 1
1þ�

ð3Þ

in which, NF represents the fatigue life. However, for equation (1), it is rather difficult to determine
�ðSm,SÞ and MðSmÞ. As a result, some simplified models are introduced, such as the modified
Chaboche model by Wang (1992), as follows

@D

@N
¼ ð1�DÞ��

�a
2Bð1�DÞ

� ��
ð4Þ

where B, �, and � are material parameters related with the environmental temperature, while B is
also dependent on the average stress, as B ¼ Bð�mÞ. This simplified model is used in this study.

Compared with equation (1), equation (4) could be expressed as

@D

@N
¼ ð1�DÞ�ð�m,�maxÞ

�a
Mð�mÞ

� ��
ð5Þ

The upper and lower integral limits of equation (5) are D N¼Ns
¼ Ds

�� and D N¼NF
¼ 1

�� , where Ds

represents a starting value of fatigue damage, and Ns is the number of cycles when D equaled to Ds.
Through integrating, the following equation is derived, as follows

Z D

Ds

ð1�DÞ��ð�M,�maxÞdD ¼

Z N

Ns

�a
Mð�mÞ

� ��
dN! ð1�DsÞ

1��ð�m,�maxÞ � ð1�DÞ1��ð�m,�maxÞ

¼ 1� �ð�m, �maxÞ½ �
�a

Mð�mÞ

� ��
ðN�NsÞ

ð6Þ

Taking D ¼ 1 and N ¼ NF into the above equation, and it is written as

NF �Ns ¼
ð1�DsÞ

1��ð�m,�maxÞ

1� �ð�m, �maxÞ

�a
Mð�mÞ

� ���
ð7Þ
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Equation (7) is simplified with equation (4), as well as that �a and �m are considered as the
function of stress level, the following model is obtained (Liu et al., 2014)

D ¼ 1� ð1�DsÞ 1�
N=NF �Ns=NF

1�Ns=NF

� ��ðSÞ
ð8Þ

The exponent �(S) represents the damage cumulative degree. For UHTCC, the starting damage
value, Ds, is taken as the initial damage of fatigue stage II. The parameters Ds and �(S) of UHTCC
are obtained with stress level as follows

Ds ¼
0:1696 S � 0:90

�0:3418þ 0:8102 � S S5 0:90

� �
ð9Þ

�ðSÞ ¼ 1:0879S2:2861 ð10Þ

Damage propagation model of UHTCC

A ductile phenomenon happens during the fatigue damage process of UHTCC. In analyzing, this
material is considered as an isotropic material due to the random distribution of PVA fibers.
According to former research (Xu and Liu, 2012), the crack covering area, A, can be used as the
parameter to describe the crack propagation law of UHTCC, as follows

dA

dN
¼ C �Jð Þm ð11Þ

in which, �J is the J-integral range during a fatigue cycle, while C and m are materials constants.
During the fracture fatigue process, the irreversible parameter, fatigue cracking area, A, reflects the
damage evolution with load cycles. Based on the former investigations on CMD model for ductile
fracture (Chow and Wang, 1987; Wang, 1992b), the damage for ductile fracture can be similarly
calculated by the following two common methods

D ¼ D0 þ ðDc �D0Þ
ðA� A0Þ

�

ðAc � A0Þ
� ð12Þ

D ¼ D0 þ ðDc �D0Þ 1� 1�
lnðA=A0Þ

�

lnðAc=A0Þ
�

� �� �
ð13Þ

where D0, Dc, A0, and Ac are the boundary conditions of fatigue damage and crack covering area.
They are defined as

D ¼ D0 when A5A0

D ¼ Dc when A ¼ Ac
ð14Þ
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According to equations (12) to (14), there exists a monotonous relation between fatigue damage
and cracking area. Therefore, a damage propagation model similar to equation (11) can be deduced,
as the following equation

dD

dN
¼ c �Jð Þn ð15Þ

In this equation, c and n are material constants. Taking logarithm on both sides of equation (15), the
following equation is obtained

log
dD

dN

� �
¼ log cþ n logð�JÞ ð16Þ

However, as stated in ‘‘Introduction’’ section, the parameter, J-integral, is not a material intrinsic
parameter while it strongly depends on specimen geometry. In order to calculate the damage propa-
gation rate accurately, an independent variable, the stress level S, is applied to describe the damage
propagation. According to former research (Chaboche, 1988b; Wang, 1992), there exists an expo-
nent relation between J-integral and maximum fatigue load as well as the fatigue stress level.
Therefore, different from the bilogarithmic linear relation shown in equation (16), a semilogarithmic
relation exists between damage propagation rate and stress level, as follows

log
dD

dN

� �
¼ aþ b � S ð17Þ

where a and b are material constants. In this study, a fatigue experiment on fracture specimens is
carried out to prove equations (16) and (17), as well as to obtain the parameters.

Fatigue experiment of single-edge-notched fracture specimen

Experiment program

A three-point flexural experiment is taken on single-edge-notched fracture specimens of UHTCC.
Specimens are produced with cementitious binders, fine sand, water, super plasticizer, and polyvinyl
alcohol (PVA) fiber. The corresponding volume fraction of PVA fiber in UHTCC is set as 2.0%. The
dimension of all specimens is 400mm� 100mm� 100mm. After standard cure for 28 days, the
specimens are laid in the indoor environment for three months. Before test, a single edge notch is
cut with a depth of 40mm.

All specimens are loaded by a 250 kN MTS testing machine. For fatigue test, fatigue load of
constant amplitude is adopted, with a sinusoidal control of 5Hz. The maximum and minimum
fatigue loads are determined according to the average ultimate loads of static specimens, as
shown in Table 1. The experimental setup is shown in Figure 1. The support span is 300mm,
with the load applied vertically at the midpoint. Two p gauges are employed to measure the
crack tip opening displacement and crack mouth opening displacement (CMOD). One linear vari-
able differential transducer is used to measure the midspan deflection. The crack covering area is
monitored with a large number of square grids labeled in front of the notch tip on the side surface.
Grids with a length of 1mm are adopted, while the area for each grid is 1mm2. The cracking area
equals to the total area of the square elements which are crossed by the cracks.

Liu et al. 923



Experiment result

During the test, multiple cracks are generated for all fatigue specimens, emerging at the notch tip
and propagating toward the loading point. The number of fatigue cracks reduces with the decrease
of fatigue stress level. Figure 2 displays the evolution curves of maximum CMOD with the load
cyclic ratio and the load cyclic number. As is seen in this diagram, the deformation capability
declines with the decrease of fatigue stress levels due to fewer cracks. Three stages exist during
the deformation process: I, rapid developing stage, II, stable developing stage, and III, failure
stage. These three stages take up about 5, 75–85, and 10–20% of the fatigue life, respectively. For
specimen F2.0-6, it is found that the maximum CMOD develops constantly in the later period and
no localized crack emerges. It is regarded that fatigue failure would not happen for this specimen,
because that the fracture energy produced by the fatigue loads on specimen F2.0-6 is below its
fatigue threshold.

Crack propagation law of UHTCC

Figure 3 shows the evolution curves of fatigue cracking area with cyclic ratio. A similar three-stage
developing trend exists. In equation (11), the average rate of crack growth during the fatigue life is
used to calculate the formula parameters. As a result, the more even of the crack propagation rate,
the more accurate of the computed results. Therefore, only the crack propagation rate in stage II is

P

square grids with
length of 1mm

P

π gauge =10

π gauge =10

Figure 1. Test setup and measuring method /mm.

Table 1. Fatigue loads and corresponding stress levels.

Ultimate static

load (Pu/kN)

Specimen

no.

Maximum load

(Pmax/kN)

Minimum load

(Pmin/kN)

Mean load

(Pm/kN)

Amplitude

(Pa/kN)

Stress

level (S)

8.42 F2.0-1 7.5 1.5 4.5 3 0.890

F2.0-2 7 1 4 3 0.831

F2.0-3 6.5 1.5 4 2.5 0.771

F2.0-4 6 1 3.5 2.5 0.712

F2.0-5 6 1.5 3.75 2.25 0.712

F2.0-6 5.5 1.5 3.5 2 0.653
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considered in this study. Take logarithm on both sides of equation (11), then the following equation
is obtained

log
dA

dN

� �
¼ logCþm log �Jð Þ ð18Þ
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Taking log(dA/dN) and log(4J) as the vertical and horizontal ordinates, respectively, the calculated
results are plotted in this coordinate, as shown in Figure 4. A linear relation is fitted between the two
variables, with the correlation coefficient r¼ 0.90275. From this fitted line in this graph, the parameters
in equation (12) are regressed as C¼ 2.3659� 10–9 and m¼ 2.7332 (Liu et al., 2014; Xu and Liu, 2012).
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Figure 4. Fitted linear bilogarithmic relation between crack propagation rate and J-integral amplitude.
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Fatigue damage propagation law of UHTCC

Fatigue damage calculation

Equations (8) to (10) are used to calculate the initial and final fatigue damages of stage II of single-
edge-notched specimens. The boundaries of this stage are taken as 5 and 85%, respectively. The
average values of damage propagation rate during fatigue stage II are computed, and the results are
listed in Table 2. In this table, NF and NII represent the full fatigue life and the fatigue life of stage II,
respectively; Ns and Nf are the initial and final load cycle numbers of stage II; Ds and Df are the
initial and final damage values of stage II, while 4D is the damage propagation quantity in this
stage; dD/dN is the average damage propagation rate. �J is J-integral value amplitude of the fatigue
test, which is determined by the static test.

Damage propagation model with J-integral

According to equation (16), taking log(dD/dN) and log(4J) as the vertical and horizontal ordinates,
respectively, the calculated results in Table 2 are shown in Figure 5. From this graph, a good linear
relation exists between the two variables, with the correlation coefficient as r¼ 0.97422. Material
constants in equation (16) are obtained as c¼ 1.5878� 10�5 and n¼ 3.3986.

Because these two equations have the same independent viable, a comparison is taken
between them. The results of them are shown in Figure 6, which shows the test results and the
calculated exponential curves. The two curves in this figure have different vertical coordinates, one is
dD/dN and another is dA/dN. As explained before, the dD/dN calculated curve, which reflects the
first damage propagation model, is obtained according to the fatigue damage model (equation (8)),
and only the experimental fatigue lives of the fracture specimens are used here. While for the dA/dN
calculated curve, the experimental results of the fracture specimens, including fatigue lives
and fatigue cracking area, are applied to compute the crack propagation model. From Figure 6,
it is seen that these two curves develop similarly although they are calculated in two different
ways. During smaller J-integral ranges, which means lower stress levels, a good fitness for the
two curves is obtained. While at higher stress levels, it is obvious that the dD/dN curve fits better with
the experimental data points than the dA/dN curve. Indeed it is seen that the dA/dN curve develops
faster than the dD/dN curve in that it exceeds the experimental data points more and more.
This is because that fatigue cracks develop faster at high stress level, and the observation error is
obvious, while the dD/dN curve is calculated according to the fatigue damage model. As a result,

Table 2. Experimental data and calculated results of the fatigue damage propagation rate.

Specimen

no.

Test data Calculated results

S NF Ns Nf NII 4J/(kJ/m2) Ds Df dD/dN� 10�6

F2.0-1 0.890 8501 425 7225 6801 1.647 0.38151 0.95661 84.5741

F2.0-2 0.831 25,301 1265 21,505 20,241 1.184 0.33272 0.93074 29.5463

F2.0-3-1 0.771 40,285 2014 34,242 32,228 0.952 0.28391 0.89377 18.9233

F2.0-3-2 0.771 81,586 4079 69,348 65,269 0.952 0.28391 0.89377 9.34380

F2.0-4 0.712 139,265 6963 118,375 111,412 0.684 0.23509 0.84326 5.45878

F2.0-5 0.712 222,657 11,133 189,258 178,126 0.680 0.23509 0.84326 3.41429
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the dD/dN model is more accurate in expressing the fatigue development rather than the
dA/dN model. Therefore, rather than the crack propagation law of equation (11), the damage
propagation model of equation (15) is supposed to have a better effect in describing the fatigue
process and damage develop of UHTCC, and the model parameters are c¼ 1.5878� 10�5 and
n¼ 3.3986.

Figure 5. Bilogarithmic linear relation of damage propagation rate with J-integral range.
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Figure 6. Comparison between damage propagation rate and crack propagation rate.
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Damage propagation model with stress level

With the computed data in Table 2 and the fatigue stress levels of the fracture specimens, the
calculated results of the second damage propagation model, equation (17), are shown in Figure 7.
As is seen in this graph, there has been an obvious linear semilogarithmic phenomenon with the
correlation coefficient r¼ 0.97144. Material constants in equation (17) are fitted as a¼�10.3682 and
b¼ 7.0780. Figure 8 shows the calculated curves of the two fatigue damage propagation models,
equations (15) and (17), respectively. All these two models and the crack propagation model of
equation (11) illustrate the fatigue propagation process of UHTCC. It is seen that the correlation
coefficients of the two damage propagation model are r¼ 0.97144 and r¼ 0.97422, while this value
for the crack propagation model is r¼ 0.90274. In another words, the two curves of the dam-
age propagation models have good fitness with the test results, which means that the two models
introduced in this study are more accurate than the crack propagation model. However, for these
two models, the second one is better in application because that it is not affected by material
geometry. Although the first damage propagation model is sensitive to specimen geometry, this
model is introduced for the purpose of constructing a connection and a comparison with the fatigue
crack propagation law, dAdN ¼ Cð�JÞm, which is similar to the Paris law (Xu and Liu, 2012). Another
reason is that the J-integral is a parameter widely used in nonlinear fracture mechanics for ductile
fracture, which is suitable for UHTCC.

Conclusions

Based on the CDM method, the fatigue damage propagation models of UHTCC are investigated
through three-point flexural fatigue experiment on single-edge-notched fracture specimens. The
continuum damage model of UHTCC under flexural fatigue is used to build the damage

Figure 7. Semilogarithmic linear relation between damage propagation rate and stress level.
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propagation models. Two damage propagation models are introduced. For the first model,
dD
dN ¼ c �Jð Þn with c¼ 1.5878� 10�5 and n¼ 3.3986, it shows to fit better with the experimental results
rather than the crack propagation model, dAdN ¼ C �Jð Þm with C¼ 2.3659� 10�9 and m¼ 2.7332. This
model is introduced for the one purpose to construct a connection and a comparison with the fatigue
crack propagation model, for another reason is that, the J-integral is parameter widely used in
nonlinear fracture mechanics for ductile fracture of UHTCC. However, because that the independ-
ent variable in this model, 4J, depends strongly on specimen geometry, another model, a linear
semilogarithmic equation, log dD

dN

	 

¼ aþ b � S with a¼�10.3682 and b¼ 7.0780, is built to overcome

Figure 8. Calculated damage propagation rate. (a) dD/dN� S, (b) dD/dN�4J.
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the effect of specimen geometry. The second model also fits well with the test results. Furthermore,
the fatigue stress level S of this second model is an independent parameter; it is only relevant
with the load setting, thus is more convenient in application.
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