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A B S T R A C T   

Fiber reinforced polymer (FRP) composites are susceptible to material degradation when exposed to environ-
mental effects. To predict the residual tensile strength and modulus of pultruded FRP composites, an XGBoost 
decision tree model was developed in this work. XGBoost decision tree, as a machine learning technique, is able 
to provide accurate predictions for tabular dataset with a good prediction interpretability. In this work, the 
methodology of XGBoost decision tree was presented in detail. Datasets for training and testing included a total 
of 746 data points which were collected from an existing database. XGBoost decision tree model predictions were 
cross-validated with 149 test data, and an excellent agreement was observed, showing R2 values of 0.93 and 0.85 
for tensile strength and modulus, respectively. In addition, attribute importance analysis was conducted to 
quantitatively evaluate the attributes pertaining to FRP degradations, including exposure time, exposure tem-
perature, pH value of environment, fiber volume fraction, plate thickness, fiber type and matrix type. Exposure 
time and temperature were observed to have the greatest impacts on residual tensile properties. The proposed 
XGBoost decision tree model provides a new approach for predicting the long-term degradations of FRP com-
posites subjected to environmental effects.   

1. Introduction 

Pultruded fiber reinforced polymer (FRP) composite materials have 
been increasingly used in the field of civil engineering [40,26,74,49]. 
Pultruded FRPs are well known to have high strength- and stiffness-to- 
weight ratios, making them a competitive alternative to conventional 
materials such as concrete and steel. In addition, FRP composites 
generally have better corrosion resistance over other materials such as 
steel, thus permitting the replacement of steel in those structures 
servicing in harsh environments, such as the chemical and marine en-
vironments. Nonetheless, FRP composites are not completely immune 
from material degradation when exposed to long-term environmental 
conditions. For instance, marine structures are highly susceptible to 
seawater ingression, and highway bridges are often exposed to high 
humidity, deicing salt and possibly acidic solutions [70]. All these 
environmental effects can negatively impact the long-term performance 
of FRP structures. The present authors [50] conducted a comprehensive 
review on eight environmental effects, including water/moisture, 

alkaline solutions, acidic solutions, low/high temperatures, ultraviolet 
radiation, freeze–thaw cycles, wet-dry cycles, and in-situ environments, 
and their degradation mechanisms may include both the physical and 
chemical reactions such as plasticization and hydrolysis. Given that FRP 
composites are often used in harsh environments, the environmental 
durability and the corresponding design method must be addressed to 
ensure the safe use of FRP structures. 

Many pioneering studies have been carried out with the purpose of 
developing predictive models for FRP durability, and those benchmark 
studies are reviewed in this section. Arrhenius [5] established a 
phenomenal relationship between the temperature and the rate of 
chemical reactions in the late 1800s, and this relationship was widely 
adopted to simulate the material degradation of FRP composites sub-
jected to a single environmental condition [18,27,51]. In addition to the 
Arrhenius model for a single environmental effect, Park et al. [64], 
based on the cumulative damage method and the stochastic process, 
proposed a hyper-cuboidal volume model to characterize material 
degradation due to the synergistic effect of multiple environmental 
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conditions. In their model, the synergistic effect was assumed to be a 
multiplicative effect of each condition. Last but not least, the moisture/ 
water ingression has been identified as one of the most detrimental ef-
fects on FRP composites [50,53,8], and accordingly, Fick’s law draws 
great attention and has been widely adopted to define the moisture 
absorption of FRP composites. Based on Fick’s law, many models have 
been developed to calculate the moisture content and diffusion coeffi-
cient of FRP composites [81,9,53]. However, it must be noted that both 
the Arrhenius relation and Fick’s law were not originally derived for FRP 
degradation; that is, the use of such models essentially stems from the 
prediction ability of their mathematical expressions, rather than their 
mechanical, physical, or chemical explanation to FRP degradation. 
Additionally, the accuracy of these models is highly affected by the 
determination of calibration factors with regard to the experimental 
tests, and these models require a continuing correction or modification 
as new test data becomes available. This type of issue is also noted by 
Jiang et al. [41] who developed an artificial neural network model for 
predicting the stress–strain relation of FRP-confined concrete. Due to the 
inadequacy of predictive models, all the commonly accepted design 
guides [6,7,21] are still using empirically determined reduction factors, 
though these factors may differ from one guide to another and may 
greatly under-estimate the true durability of FRP composites. 

The difficulty in deriving the universally reliable design equations 
for FRP durability is mainly due to three reasons [50]. First, the long- 
term performance of FRP composites is affected by a number of 
external environmental effects as well as by different compositions of 
materials, such as FRPs made of different fibers and resins with different 
fiber volume/mass ratios [2,58]. For instance, the degradation mecha-
nism of FRPs subjected to water/moisture ingression is illustrated in 
Fig. 1. It is seen that water ingression may lead to damages on three 
phases of the material, including fiber, matrix and fiber–matrix inter-
face, and the damages may be due to physical and chemical reactions, 
such as plasticization and hydrolysis [62,50,46]. These damages may 
occur at varying levels depending on the different types of fiber and 

matrix materials, the fiber volume fractions and the plate thickness of 
the FRP material being investigated. Such a complexity of FRP degra-
dation is the first and foremost reason to hinder the development of 
design equations. Second, it is the synergistic effect of multiple envi-
ronmental conditions that actually affects the long-term performance of 
FRP composites in the real world, and the synergistic effect greatly in-
creases the complexity of the degradation mechanism of FRPs. For 
instance, the hygrothermal effect is a combined effect of high humidity 
and high temperature, and the resulting damage is not a simple linear 
accumulation of each single effect. Moreover, marine environment, as a 
typical harsh environment in civil engineering, consists of four different 
effects, including alkaline water ingression, ultraviolet radiation, wet- 
dry cycle and high temperature [77,78,1]. The resulting synergistic ef-
fect cannot be accurately assessed by existing predictive models. Finally, 
many analytical studies on durability of FRP composites are conducted 
at the microscopic molecular level, and the obtained findings are 
intrinsically difficult to be expanded to the macroscopic structural level 
[72]. The discrepancy between molecular and structural levels may 
result from the presumed simplifications in the molecular model and 
many other assumptions used for filling in the gap between microscopic 
and macroscopic levels. These three reasons, together, make the pre-
diction of the lifetime mechanical properties of FRP composites an 
extremely challenging task. 

The degradation of FRP composites is shown to be a highly nonlinear 
multi-dimensional problem with many influential factors. These influ-
ential factors may be categorized into the internal factors, such as the 
different fiber and matrix types and different fiber volume fractions, and 
the external factors, including different types of environmental condi-
tions. In this regard, the conventional mechanical analysis can only help 
qualitatively understanding the long-term performance of FRP com-
posites, whereas the accurate predictions of long-term mechanical 
properties of FRP composites can hardly be obtained. Thus, there is a 
gap between the understanding and the application of FRP composites. 
In order to fill this gap, a framework of long-term performance 

Fig. 1. Degradation mechanisms of FRP composites subjected to water/moisture ingression [50]: Water ingression could induce damage at all three phases of 
FRPs, including the fiber, matrix and fiber–matrix interface. First, microcracks can occur at the surface of the fibers and eventually lead to fiber rupture. Second, 
water ingression, realized through diffusion and capillary action, could cause swelling of the matrix and propagation of microcracks, thereby affecting the micro-
structure of the resin matrix. Typically, physical and chemical damage—plasticization and hydrolysis—can occur. Third, the water absorbed along the fiber–matrix 
interface could cause differential swelling of the interface and propagation of microcracks. Fiber-matrix debonding can occur, and a portion of matrix material may 
hydrolytically dissolve into the water. 
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prediction of FRP composites is proposed in this work, as shown in 
Fig. 2. The big data on FRP degradation (seawater ingression, for 
instance) is first collected through numerous studies and applications 
and then, it is input into the machine learning model, which can provide 
accurate predictions of mechanical properties of FRPs. 

Machine learning technique has tremendously progressed in the 
recent decades, and its applications have expanded beyond the scope of 
computer science, as it can provide a novel approach in solving con-
ventional engineering problems. For instance, machine learning, com-
bined with big data, has seen some pioneering applications in the field of 
civil engineering, such as predicting the performance of materials and 
monitoring the health of structures [71]. In particular, machine learning 
has been demonstrated to have many significant advantages in solving 
nonlinear regression and classification problems, particularly when a 
number of parameters are of interest. Additionally, machine learning 
can extract the internal correlation between input data and output re-
sults through continuous training, and its prediction ability can be 
further improved by enriched database and cross-validations. Machine 
learning, as the main category of its type, composes many different al-
gorithms, and in this work, the decision tree model is selected to develop 
the predictive model for mechanical properties of pultruded FRP 
composites. 

In this work, the longitudinal tensile properties of pultruded FRPs are 
focused as they are of the highest interest for many practical applica-
tions, and the corresponding feasibility study can readily serve as a 
guide for future studies for other mechanical properties, such as the 
compressive and shear properties. Moreover, the water, high humidity 
and alkaline solution are often considered the most detrimental condi-
tions for FRP composites, and thus, they are selected as the objective 
environmental effects in this work. The database developed by Liu et al. 
[50] includes over 1900 data points directly obtained from material 
aging tests, and over 700 data points pertaining to tensile properties are 
selected for the purpose of this work. In the following sections, the de-
cision tree model is first introduced and discussed in detail. Then, the 
predictive model is developed, and the predictions are validated with 
experimental results. The proposed model provides a novel approach for 
predicting the mechanical properties of FRP composites subjected to 
long-term environmental effects. 

2. Decision tree model for civil engineering 

To date, many machine learning algorithms have been adopted to 
solve problems in civil engineering [73]. The most commonly used al-
gorithms may include artificial neural networks (ANNs), support vector 
machines (SVMs) and decision trees. Some studies [65,66,15,67] built 
ANN models to predict the shear and compressive strength of FRP bar- 
reinforced concrete beams and FRP-confined concrete columns. On the 
other hand, some studies [61,35,20] developed SVM and its derivative 
models to predict the compressive strength of normal and high- 
performance concrete, and FRP-confined concrete. Based on these 
studies, it is found that the ANN algorithm typically requires a relatively 
large database and a high computational cost for the training process so 
as to assure a satisfactory accuracy, and the SVM model with hyper-
parameters can be properly trained only when the kernel functions, 
regularization penalties, and slack variables are all correctly selected. 
Thus, the applicability of ANN and SVM algorithms may be limited. The 
decision tree algorithm, compared to ANN and SVM, can provide a more 
robust approach. For instance, Marks et al. [56] built a decision tree to 
assess the surface scaling resistance of fly ash concrete and Mansouri 
et al. [54] proposed an improved M5 decision tree to predict the strength 
and FRP-confined concrete. Their study revealed the good result inter-
pretability and accuracy of the decision tree model as compared to the 
ANN model. Moreover, Chou et al. [23] combined the regression tree 
and multilayer perceptron neural network via ensemble learning 
method to predict the compressive strength of high-performance con-
crete and found that the ensemble learning technique outperformed any 
single learning technique. In this regard, the boosting tree model, as a 
type of ensemble decision tree model, has drawn attention in the field as 
it can generate precise predictions by integrating the outputs from many 
weak tree models [82]. In fact, a single decision tree model may not 
necessarily outperform conventional neural network models, whereas 
the boosting tree model is able to generate much more accurate results 
than the ANN models [79,22]. The typical mathematical expression of 
the boosting tree model is given as [29]: 

fM(x) = w0 +
∑M

m=1
wmϕm(x) (1)  

Fig. 2. Framework of long-term performance prediction of FRP composites: FRP deterioration is observed through numerous engineering applications (marine 
environment, for instance); then, the material degradation mechanism is studied, providing the big data in terms of the residual mechanical properties of FRPs; in this 
study, the big data is input into the machine learning model, which can provide accurate predictions of long-term performance of FRPs. 
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where x is the input variable; M is the total number of decision trees in 
the boosting model, and each tree is a weak prediction model; and ϕm(x)
and wm are the prediction result and the weight of the mth tree, 
respectively. Thus, the overall prediction result of boosting tree fM(x) is 
the weighted sum of all decision trees. 

Among all types of boosting trees, gradient boosting decision tree 
(GBDT) is often deemed the most representative boosting tree algorithm. 
GBDT uses gradient descent to minimize the loss function in each step 
and generate a new decision tree. Chou et al. [22] compared the pre-
diction accuracy of concrete compressive strength predicted by five 
different algorithms, including the ANN, SVM, multiple regression, 
bagging regression tree, and GBDT. GBDT was seen to have powerful 
potential in achieving the best accuracy. In addition, conventional GBDT 
can be further upgraded to an extreme gradient boosting (XGBoost) 
decision tree. In recent years, XGBoost has shown outstanding perfor-
mance in numerous data mining competitions, and its prediction output 
can be readily interpreted. The advantages of XGBoost stem from its new 
features, such as structure penalization of trees, random variables and 
parallel calculation abilities [17]. The representative applications of 
XGBoost decision tree can be found in Dong et al. [30] and Lim and Chi 
[48] on material and structural levels, respectively. Recently, Duan et al. 
[31] compared the performance of XGBoost, ANN, and SVM in pre-
dicting the compressive strength of recycled aggregate concrete, and 
XGBoost was reported to outperform the other algorithms. Based on 
findings from previous studies, it can be concluded that XGBoost deci-
sion tree has an excellent capability of solving the nonlinear regression 
problem. 

The degradation of FRP composites subjected to long-term environ-
mental effects is highly nonlinear, and in this work, XGBoost decision 
tree algorithm is adopted to predict the residual longitudinal tensile 
properties of pultruded FRPs. The proposed XGBoost model employs the 
GridSearchCV and k-fold cross-validation methods to determine the best 
hyperparameters of the algorithm. The statistical scores, including the 
R-square value (R2), root mean square error (RMSE), mean absolute 
error (MAE) and mean absolute percentage error (MAPE), are taken as 
the criteria to evaluate the accuracy of predictions. Finally, the respec-
tive contribution/importance of each input variable (i.e., parameters of 
interest) is analyzed and visualized via attribute importance analysis. 

3. Methodology 

3.1. XGBoost algorithm 

Considering the complex degradation mechanisms of pultruded FRP 
composites under long-term environmental effects, XGBoost algorithm 
was selected in this work to develop the predictive model for the me-
chanical properties of FRP materials after the comparison and trials of 
different algorithms. XGBoost, first proposed by Chen and Guestrin [17], 
is capable of analyzing the specific importance of a variety of parameters 
in the model. In addition to the well-acknowledged accuracy, XGBoost 
has many advantageous features. First, the input dataset is organized in 
a tabular form, which is indeed the preferred data form in civil engi-
neering. Some studies [16,75,80] have clearly reported that XGBoost is 
more proficient in using tabular datasets than other algorithms, such as 
the ANN model that typically requires a large-scale dataset in forms of 
pictures and/or videos. Second, XGBoost is a sparsity-aware algorithm. 
This is of particular significance when some parts of data are missing. In 
this case, XGBoost can automatically find the optimal results for the 
missing data based on the rest of the dataset. Third, XGBoost prescribes a 
high penalty on the structural complexity of the model, and this mech-
anism can efficiently prevent overfitting. Finally, XGBoost works faster 
with regard to the training process than other tree models since it can 
perfectly organize the software platform and hardware resources and 
generate each tree instance by parallel computing. 

The XGBoost algorithm is composed of many classifications and 
regression trees (CARTs) that are capable of solving both classification 
and regression problems. In this work, the residual longitudinal tensile 
properties of pultruded FRP composites are to be predicted, which can 
be considered a regression problem. The structure of XGBoost can be 
expressed in the form of a flowchart, including multiple root nodes, 
many internal nodes, branches, and leaf nodes, as shown in Fig. 3. In this 
structure, the ith parameter xi is input into the model and delivered to all 
the root nodes of all CARTs for the initial decisions. Then, the internal 
nodes make the following decisions. The branches direct to the decisions 
to be processed. The leaf nodes represent the prediction results of each 
single CART. Finally, all the results from leaf nodes are combined 
together, yielding the prediction result of XGBoost model [13]. Taking 
the ith dataset (xi, yi) as an example (xi is the input variable with several 
attributes and yi is the real value for validation purpose), XGBoost model 
can be mathematically expressed using Eq. (2) [17]. 

Fig. 3. Schematic of XGBoost decision tree model: Input data is first sent to the root node for initial decision; then, the internal nodes are to make the following 
decisions, and the branches direct to the decisions to be processed; the leaf node yields the prediction of a tree; finally, the predictions from all trees are added up, and 
the final prediction is obtained. 
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ŷi =
∑M

m=1
fm(xi) (2)  

where ŷi is the predicted value with respect to input xi; M is the total 
number of CARTs being used; and fm represents the predicted value of 
each independent CART. Eq. (2) clearly shows that the predicted score ̂yi 
with respect to input xi is given as the sum of all fm values. 

With the prediction result being obtained, an objective function is 
needed to evaluate the quality of result. In XGBoost algorithm, the 
objective function L is given as [63]: 

L =
∑n

i
l(yi, ŷi)+

∑K

k=1
Ω(fk) (3) 

This objective function contains two parts: 1) the loss function l, 
which measures the distance between predicted value ŷi and real value 
yi; and 2) the regularization item Ω, which penalizes the complexity of 
tree structure. The specific form of Ω for one CART is given as: 

Ω(f ) = γT +
1
2

λ
∑T

j=1
ω2

j (4)  

where T is the total number of leaf nodes of a CART; wj is the predicted 
value of the jth leaf node; and γ and λ are the hyperparameters of the 
algorithm. When increasing γ and λ, the penalty for structural 
complexity of CART is increased; that is, increasing the complexity of 
tree leads to increased penalty. The goal of Ω is to make XGBoost a 
simple tree structure as well as to avoid overfitting. 

In order to minimize the objective function and achieve the best 
prediction result, training of XGBoost model is needed. This process, 
often known as the optimization process, is conducted in a step-by-step 
manner. In each step, a new CART is generated based on existing CARTs, 
and the objective function is further reduced. The objective function of 
the tth step L(t) can be calculated based on the previous step L(t− 1) as: 

L(t) =
∑n

i
l
(

yi, ŷ(t)
i

)
+
∑t

i=1
Ω(fi)

=
∑n

i
l
(

yi, ŷ(t− 1)
i + ft(xi)

)
+
∑t− 1

i=1
Ω(fi)+Ω(ft) (5) 

The existing (t − 1) CARTs are known and can be seen as a constant in 
the tth step; that is, the second term on the right-hand side of Eq. (5) can 
be replaced by a constant c. Then, L(t) can be simplified as: 

L(t) =
∑n

i
l
(

yi, ŷ(t− 1)
i + ft(xi)

)
+Ω(ft)+ c (6) 

Additionally, by applying the second-order Taylor expansion to 
above equation, the objection function can be transformed into: 

L(t) =
∑n

i=1

[

l
(

yi, ŷ(t− 1)
i

)
+ gift(xi)+

1
2
hif 2

t (xi)

]

+Ω(ft)+ c (7)  

where 

gi =
∂l
(

yi, ŷ(t− 1)
i

)

∂ŷ(t− 1)
i

(8)  

hi =
∂2l
(

yi, ŷ(t− 1)
i

)

∂
(

ŷ(t− 1)
i

)2 (9) 

When optimizing the tth CART, there are n pairs of gi and hi to be 
calculated (n is the total number of datasets). Given that each input 
variable is independent, gi and hi can be calculated in a parallel manner. 
With that said, the CPU resources can be fully utilized, and the calcu-
lation speed can be greatly improved. 

In addition, the form of loss function l can be determined according 
to specific problem. The only requirement is that the loss function must 
permit the second-order derivative. In this work, the expression of re-
sidual standard error (RSE) is selected as the loss function. Since each 
input variable xi is to be projected to a leaf node of a CART, fk(xi) can be 
written as: 

fk(xi) = ωq(xi),ω ∈ RT , q : Rd→{1, 2,⋯, T} (10)  

where q(xi) is a function that maps xi (i.e., d-dimensional vector) to the 
index of a specific leaf node; w is the value of this specific leaf node; T is 
the leaf node number of the kth tree; d is the attribute number of the 
input xi; and RT and Rd indicate T-dimensional and d-dimensional vec-
tors. Substituting Eqs. (4), (8), (9), and (10) into Eq. (7) yields: 

L(t) ≈
∑n

i=1

[

giωq(xi) +
1
2
hiω2

q(xi)

]

+ γT +
1
2

λ
∑T

j=1
ω2

j + c  

=
∑T

j=1

[(
∑

i∈Ij

gi

)

ωj +
1
2

(
∑

i∈Ij

(hi + λ)ω2
j

)]

+ γT + c (11) 

Letting Gj =
∑

i∈Ij gi and Hj =
∑

i∈Ij hi, Eq. (11) is simplified as: 

L(t) =
∑T

j=1

[

Gjωj +
1
2
(
Hj + λ

)
ω2

j

]

+ γT + c (12) 

In order to determine the minimum value of objective function L, the 
first derivative of Eq. (12) is obtained. Lmin is therefore calculated as: 

Lmin =
1
2
∑T

j=1

G2
j

Hj + λ
+ γT + c (13)  

and Lmin is obtained when ωj is taken as: 

ωj = −
Gj

Hj + λ
(14) 

The minimum value of objective function L is, therefore, the pre-
dicted value shown on leaf node. Furthermore, to find the best structure 
of each CART, a greedy algorithm is adopted to optimize the tree 
structure [33]. In particular, a gain function is used, as shown in Eq. 
(15). 

Gain =
1
2

(
G2

L

HL + λ
+

G2
R

HR + λ
−

(GL + GR)
2

HL + HR + λ

)

− γ (15) 

The gain function has four terms: the first two terms are the profits of 
left and right parts of a node, where GL, GR are the left and right parts of 
Gj, and HL and HR are the left and right parts of Hj; and the third item is 
the total profit of that node. The last item is the regularization item for 
preventing overfitting. The greedy algorithm determines whether a node 
obtains the maximum gain. Thus far, the optimal tree structure that 
maximizes the gain can be generated. 

3.2. Performance evaluations 

In order to evaluate the performance of the proposed model, four 
statistical criteria, including R2 value, RMSE, MAE and MAPE, are used. 
Their mathematical expressions are presented in Eqs. (16)–(19). 

R2 = 1 −
∑

i(ŷi − yi)
2

∑
i(yi − y)2 (16)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑

i
(yi − ŷi)

2

√

(17)  

MAE =

∑
i|yi − ŷi|∑
i|yi − y|

(18) 
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MAPE =
∑

i

⃒
⃒
⃒
⃒
ŷi − yi

yi

⃒
⃒
⃒
⃒ (19)  

where yi is the real value; ̂yi is the predicted value; and y is the average of 
real values. R2 measures the correlation between real value and pre-
dicted value, and a greater R2 indicates a better performance of the 
model. The other three methods (i.e., RMSE, MAE and MAPE) measure 
the distance between real value and predicted value, and smaller RMSE, 
MAE and MAPE indicate a better performance. 

3.3. Prediction interpretations 

A good machine learning algorithm can not only provide good pre-
diction accuracy, but also have good interpretability on the predicted 
results [43,59]. In general, an algorithm with good interpretability can 
facilitate the comprehension and acceptance of the model being devel-
oped. In this work, attribute importance analysis is conducted to assess 
the interpretability of proposed model. Attribute importance is used to 
directly quantify the specific contribution/importance of each attribute 
of a variable in dataset (considering one variable may have multiple 
attributes). In XGBoost, the attribute importance of a variable can be 
explicitly expressed as a score. Those attributes with high scores are 
expected to have a greater impact on the final predictions. 

4. Analytical program 

In this work, an XGBoost decision tree-based predictive model is 
developed to calculate the residual tensile strength and modulus of 
pultruded FRP composites subjected to water immersion and alkaline 
solution immersion. This model enables the analysis of all the possible 
influential parameters pertaining to pultruded FRP composites and 
environmental conditions. The detailed developments of proposed 
model are presented in this section. 

4.1. Dataset determination 

Machine learning, as a data analysis technique, is carried out on an 
existing database. The review work conducted by the present authors 
[50] summarized over 1,900 experimentally obtained residual proper-
ties of FRP composites subjected to eight environmental conditions, 
including water/high humidity, alkaline solutions, acidic solutions, 
low/high temperature, ultraviolet radiation, freeze–thaw cycle, wet-dry 
cycle, and in-situ environment. The XGBoost model addressed in this 
work is constructed based on this database. In particular, this work is 
focused on the tensile properties of FRPs exposed to water, high hu-
midity, and alkaline solutions as these conditions have the most detri-
mental effects on FRPs [28,55]. Moreover, focusing on alkaline solutions 
also stems from the fact that pultruded FRP composites are being 
increasingly used in marine structures and alkaline environment is of 
critical design concern [70]. In addition, four rules are adopted for 
selecting the appropriate data for the XGBoost decision tree model:  

(1) Tests with quantified results are selected, while tests that do not 
include quantified results are filtered out.  

(2) Tests conducted on FRP composites alone are selected, while tests 
carried out on FRP-concrete hybrid materials are filtered out, 
such as concrete beams reinforced with FRP bars.  

(3) Tests conducted on thermoset resin-based materials are selected, 
including epoxy-, polyester-, and vinyl ester-based materials, 
while tests on thermoplastic resin-based materials are filtered 
out.  

(4) Tests conducted on carbon, glass and basalt fiber-reinforced 
materials are selected, while tests on organic fiber-reinforced 
materials, such as aramid FRPs, are filtered out. 

With all the data being filtered, a total of 275 data points (i.e., tested 
mechanical properties) under water immersion/high humidity condi-
tions and 267 data points under alkaline solution conditions are ob-
tained to develop the predictive model for the tensile strength of 
pultruded FRP composites. On the other hand, a total of 118 data points 
under water/high humidity conditions and 86 data points under alkaline 
solution conditions are extracted to construct the predictive model for 
the tensile modulus of elasticity of pultruded FRP composites. It is noted 
that the repeated test results from different studies, such as Chen et al. 
[18] and Chen et al. [19], and Chu et al. [24] and Chu and Karbhari 
[25], are recognized and only counted once. 

These data are deemed the raw dataset and contain all necessary 
information regarding materials and tests, including the composition of 
materials (i.e., fiber type, resin type and amount of fiber/resin content) 
and the specific environmental conditions (i.e., exposure time and 
temperature, and pH value of alkaline solution). In order to construct the 
decision tree, all of the information needs to be parameterized. The rules 
of parameterization are as follows:  

(1) Different fibers and resins have different mechanical properties, 
and thus, they are considered different types of materials in this 
model. To differentiate and parameterize the fibers and resins, 3- 
dimensional vectors are used. Following the method by [37,38], 
FRPs with glass (G), carbon (C), and basalt (B) fibers are 
parameterized as a vector of (vG, vC, vB). Similarly, FRPs with 
epoxy (E), polyester (P), and vinyl ester (V) resins are parame-
terized as a vector of (vE, vP, vV). In addition, 1 and 0 are used to 
denote the status of fiber and resin. For instance, an FRP made of 
glass fiber and polyester resin is denoted as (1, 0, 0) for fiber and 
(0, 1, 0) for resin.  

(2) Different pultruded FRP profiles exist in the database, including 
FRP plates (whose size is described by plate thickness) and FRP 
bars (whose size is described by bar diameter). To unify the 
thickness of all FRP materials, the diameter of bars is taken as the 
thickness of materials.  

(3) The pH value of fresh/distilled/tap/deionized/demineralized 
water is taken as 7, and the pH values of alkaline solutions are 
taken as those prescribed in the tests. Provided that the specific 
pH value is absent in the test, strong alkaline solutions are set to 
pH = 13, and weak alkaline solutions are set to pH = 8. In 
addition, the on-site/artificial seawater environment is set to pH 
= 8.  

(4) To unify and parameterize the durations of accelerating tests, the 
test time is converted to hours. The test time of all control spec-
imens is naturally denoted as zero.  

(5) The temperatures of all accelerating tests are converted to 
Celsius. In addition, room temperature is considered to be 20 ℃. 

(6) The relative humidity is considered to be 0.46 in absence of in-
formation. For water condition, the humidity is considered to be 
1. 

Through data preprocessing, all the information of data are param-
eterized into a structured vector. Since the XGBoost model can auto-
matically fill in for those missing items in the vector, the absent data can 
be left blank and set to null when training the model [52]. 

4.2. Model development 

The preprocessed data are then randomly grouped into 1) a training 
set and 2) a testing set at an empirical ratio of 4:1 [11]. Random 
grouping can remove the interferences from all other possible external 
factors of the dataset. In addition, in this work, the water and high hu-
midity conditions are grouped as they have similar degradation effect on 
FRPs; that is, those data points pertaining to high humidity are included 
in the dataset of water condition. The pH value is used as a criterion for 
differentiating between water and alkaline solutions in the decision tree, 
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Table 1 
Information availabilities of collected dataset.  

Model 
type 

Environmental 
condition 

Author  Test information availabilities Number of 
collected data 
points Fiber 

type 
Matrix 
type 

Fiber 
volume 
fraction 

Plate 
thickness 

pH 
value 

Relative 
humidity 

Exposure 
time 

Exposure 
temperature 

S-model Alkaline solution 
immersion 

Gentry et al.  
[34] 

√ √ √ √ √ – √ √ 11 

McBagonluri 
et al. [57] 

√ √ √ √ √ – √ √ 1 

Chu et al. [24] √ √ √ √ √ – √ √ 29 
Micelli and 
Nanni [58] 

√ √ √ √ √ – √ √ 9 

Chen et al. [19] √ √ √ √ √ – √ √ 16 
Kafodya et al.  
[42]1 

√ √ – √ – – √ √ 12 

Lu et al. [51] √ √ √ √ √ – √ √ 36 
Heshmati et al.  
[39] 

√ √ √ √ – – √ √ 8 

Chen et al. [18] √ √ √ √ √ – √ √ 17 
Kim et al. [44] √ √ √ √ √ – √ √ 65 
Won et al. [76] √ √ – √ √ – √ √ 25 
Sawpan et al.  
[69] 

√ √ – √ √ – √ √ 8 

Cabral-Fonseca 
et al. [14] 

√ √ √ √ – – √ √ 30 

Water immersion Liao et al. [47] √ √ √ √ √ – √ √ 2 
Shao and 
Kouadio [70] 

√ √ √ √ √ – √ √ 20 

Gentry et al.  
[34] 

√ √ √ √ √ – √ √ 12 

McBagonluri 
et al. [57] 

√ √ √ √ √ – √ √ 2 

Chen et al. [19] √ √ √ √ √ – √ √ 4 
Chu and 
Karbhari [25] 

√ √ √ √ √ – √ √ 57 

Kafodya et al.  
[42] 

√ √ – √ √ – √ √ 13 

Lu et al. [51]2 √ √ √ √ √ – √ √ 39 
Grammatikos 
et al. [36] 

√ √ √ √ √ – √ √ 17 

Heshmati et al.  
[39] 

√ √ √ √ √ √ √ √ 14 

Kim et al. [44] √ √ √ √ √ – √ √ 45 
Al-Salloum et al. 
[3] 

√ √ √ √ √ – √ √ 7 

Cabral-Fonseca 
et al. [14] 

√ √ √ √ √ – √ √ 38 

Zhang et al.  
[83] 

√ √ √ √ √ – √ √ 5 

M− model Alkaline solution 
immersion 

McBagonluri 
et al. [57] 

√ √ √ √ √ – √ √ 1 

Micelli and 
Nanni [58] 

√ √ – √ √ – √ √ 9 

Kafodya et al.  
[42] 

√ √ – √ – – √ √ 12 

Lu et al. [51]2 √ √ √ √ √ – √ √ 9 
Heshmati et al.  
[39] 

√ √ √ √ – – √ √ 8 

Kim et al. [44] √ √ √ √ √ – √ √ 39 
Sawpan et al.  
[69] 

√ √ – √ √ – √ √ 8 

Water immersion Liao et al. [47] √ √ √ √ √ – √ √ 2 
Shao and 
Kouadio [70] 

√ √ √ √ √ – √ √ 20 

McBagonluri 
et al. [57] 

√ √ √ √ √ – √ √ 2 

Kafodya et al.  
[42]1 

√ √ – √ √ – √ √ 13 

Lu et al. [51]2 √ √ √ √ √ – √ √ 12 
Grammatikos 
et al. [36] 

√ √ √ √ √ – √ √ 17 

Heshmati et al.  
[39] 

√ √ √ √ √ √ √ √ 14 

Kim et al. [44] √ √ √ √ √ – √ √ 26 
Al-Salloum et al. 
[3] 

√ √ √ √ √ – √ √ 7 

(continued on next page) 
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which allows the emergence of two datasets. Therefore, for predicting 
the tensile strength, 275 water condition data points and 267 alkaline 
solution condition data points can be emerged, resulting in a total of 542 
data points. This dataset for tensile strength is further divided into a 
training set (with 434 data points) and a testing set (with 108 data 
points). Similarly, for predicting the tensile modulus of elasticity, 118 
water condition data points and 86 alkaline solution condition data 
points are emerged, yielding a total dataset with 204 data points. This 
dataset for tensile modulus is then divided into the training set (with 163 
data points) and testing set (with 41 data points). The predictive models 
for tensile strength and modulus are designated as the S-model and 
M− model, respectively. The information availabilities of the collected 
dataset are presented in Table 1, and the data range of each attribute is 
showed in Table 2. As aforementioned, XGBoost can automatically fill in 
for missing information based on the remaining dataset. 

With the training and testing datasets determined, the hyper-
parameters of XGBoost model are to be determined, including tree- 
number, learning-rate, max-depth, min-child-weight, subsample, 

colsample-bytree, γ, α, and λ. Tree-number indicates the number of 
regression trees in XGBoost model; learning-rate defines the step size of 
each training round; max-depth defines the number of branches from 
root node to leaf node of a regression tree, namely, the depth of a 
regression tree; min-child-weight defines the complexity of a regression 
tree (in this case, a smaller min-child-weight value results in a more 
complex tree model that is more likely to be overfitted); subsample in-
dicates the ratio of training set to the total dataset of a regression tree; 
colsample-bytree indicates the ratio of training attributes to total attri-
butes of a regression tree; and γ, α, and λ are regularization factors of the 
objective function (see Eq. (4)), which are used to prevent the model 
from overfitting. 

Appropriate selections of hyperparameters directly impact the 
overall performance of XGBoost model. In order to find the optimal 
combination of hyperparameters, GridsearchCV method and k-fold 
cross-validation were adopted. This process is schematically shown in 
Fig. 4. GridSearchCV is an automated parameter tuning method, which 
is essentially an exhaustive search method; that is, all possible 

Table 1 (continued ) 

Model 
type 

Environmental 
condition 

Author  Test information availabilities Number of 
collected data 
points Fiber 

type 
Matrix 
type 

Fiber 
volume 
fraction 

Plate 
thickness 

pH 
value 

Relative 
humidity 

Exposure 
time 

Exposure 
temperature 

Zhang et al.  
[83] 

√ √ √ √ √ – √ √ 5  

1 Test specimens were also subjected to external loading. 
2 Test specimens were preheated before immersion. 

Table 2 
Attributes and data ranges of collected dataset.  

Model type Attributes of dataset [data range] 

Fiber type Matrix type Vf Coupon thickness (mm) pH value Exposure time (hours) Exposure temperature (◦C) 

S-model [G, C, B] [E, P, V] [0.22, 0.83] [0.7, 14] [7, 13] [0, 20160] [20, 100] 
M− model [G, C, B] [E, P, V] [0.29, 0.83] [1.25, 14] [7, 13] [0, 20160] [20, 100]  

Fig. 4. Schematic of GridSearchCV method and k-fold cross-validation for determining control hyperparameter combination: GridSearchCV automatically 
evaluates all the possible combinations of hyperparameters, and the combination having the highest performance score is taken as the control solution. The per-
formance score is calculated through k-fold cross-validation, which automatically divides the training dataset into a training fold and a validation fold at a ratio of (k- 
1):1 (k = 10, in this case). Then, this training and cross-validation process is repeated k times; in each round, the validation fold is shifted to another group, and R2 

value is calculated as the performance score. As a result, for each possible hyperparameter combination, a total of k scores is obtained, and the arithmetic average of 
these k scores is taken as the performance score of that hyperparameter combination. 
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combinations of hyperparameters are to be evaluated and compared, 
and the combination having the highest performance score is taken as 
the control solution, namely, the control hyperparameter combination 
[12,68]. In this case, the total number of hyperparameter combinations 
is referred to as n. The test range of hyperparameters is shown in Table 3. 
Moreover, R2 value is used as the performance score, as calculated 
through k-fold cross-validation. K-fold cross-validation automatically 
divides the training dataset into a training fold and a validation fold at a 
ratio of (k-1):1. Then, this training and cross-validation process is 
repeated k times; in each round, the validation fold is shifted to another 
group, and R2 value is calculated as the performance score. As a result, 

for each possible hyperparameter combination, a total of k scores is 
obtained. The arithmetic average of these k scores is taken as the per-
formance score of that hyperparameter combination; in this work, k is 
taken as 10 [45]. The combination with the highest score (among a total 
of n combinations) is therefore the control combination for XGBoost 
model. 

In addition to R2 value, the mean absolute error (MAE) is adopted as 
the second performance score so as to double-check the optimal 
hyperparameter combination. GridSearchCV method and k-fold cross- 
validation are, again, conducted, and in this process, the performance 
scores are all replaced by MAE values. A total of 500 hyperparameter 
combinations (i.e., n = 500 in this case) are tested. The obtained average 
MAE values of S-model are plotted against their corresponding hyper-
parameter combinations, as shown by the solid curves in Fig. 5. The 
shaded area represents ±1 standard deviation based on the average MAE 
value, and this standard deviation was calculated based on the 10 MAE 
values of each combination (k = 10 in this case). The MAE values of both 
the training fold and validation fold decrease as the number of combi-
nations increases. This indicates that the prediction performance in-
creases with increasing hyperparameter combinations. Additionally, 
MAE values of the training fold are lower than those of the validation 
fold; that is, the accuracy of training fold is higher than that of the 
validation fold. This is because only the training fold is involved in the 
training process, and the resulting predictions naturally have a better 
correlation with the training fold. Fig. 5 also shows that MAE values of 
the training fold start to converge at approximately 100 combinations. 
The control combination obtained from previous process (i.e., R2 value- 
based process) is 400. Based on the results from both R2 and MAE 
analysis, the number of hyperparameter combinations is finally taken as 
400 for S-model. When repeating this MAE-based analysis for M− model, 
the optimal number of combinations is also obtained, which is 150. On 
the other hand, the control combination obtained from R2 value-based 
analysis is 80. Based on those results, the control number of hyper-
parameter combinations is finally taken as 150 for M− model. 

The control hyperparameters are presented in Table 3. With all 
hyperparameters determined, the XGBoost model is finalized, and the 
predictive model is successfully obtained. The flowchart of the entire 
development of predictive model is presented in Fig. 6. Using this model, 
the residual tensile properties of pultruded FRP composites subjected to 
water immersion and alkaline solution immersion are calculated. The 
results are presented in the following sections. 

5. Prediction results and analysis 

5.1. Prediction results 

With the optimal hyperparameters determined via GridSearchCV 
method, predictive models for the tensile properties of pultruded FRP 
composites under environmental effects of water, high humidity and 

Table 3 
Hyperparameters of XGBoost decision tree model.  

Hyperparameters Initial 
value 

[Test range] 
(Increment size) 

Control value 

S- 
model 

M− model 

1. Tree-number 50 [20, 500] (10) 400 150 
2. Learning-rate 0.1 [0.01, 0.05, 0.07, 0.1, 

0.2, 0.5, 1, 2, 4] 
0.1 0.1 

3. Max-depth 5 [3, 10] (1) 5 5 
4. Min-child- 

weight 
6 [1, 10] (1) 4 5 

5. Subsample 0.8 [0.1, 1.0] (0.1) 0.7 0.9 
6. Colsample- 

bytree 
0.8 [0.1, 1.0] (0.1) 0.8 0.6 

7. γ 0 [0, 0.6] (0.1) 0 0 
8. α 0 [0, 0.05, 0.1, 1, 2, 3, 4] 0 0 
9. λ 1 [0, 0.05, 0.1, 1, 2, 3, 4] 1 1  
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Fig. 5. MAE vs. hyperparameter combination (n = 500).  

Materials
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Preprocessed 
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Validation fold
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Fig. 6. Flowchart of predictive model development.  
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alkaline solution immersions are obtained, including S-model for tensile 
strength and M− model for tensile modulus of elasticity. The prediction 
results for testing set as well as the detailed information regarding the 
aging tests are presented in Appendix A. XGBoost-predicted residual 
tensile strength and experimentally determined residual tensile strength 
are all normalized against their as-received tensile strength, and the 
predicted strength is plotted against the experimental results, as shown 
in Fig. 7. For both the training set and testing set, XGBoost-predicted 
tensile strengths are generally close to those obtained from acceler-
ated aging tests. The training set indeed shows a better correlation than 
testing set. This is actually expectable for most machine learning tech-
niques since the training set is directly used to output the predictions. In 
addition, XGBoost-predicted residual tensile modulus of elasticity and 
experimentally determined residual tensile modulus are normalized 
against the as-received tensile modulus, and the predicted modulus are 
plotted against experimental results, as shown in Fig. 8. For training set, 
a good correlation between XGBoost predictions and experimental 

results can be seen, while for testing set, that correlation is reduced. This 
is mainly due to the smaller volume of dataset for M− model. 

To quantify the performance as well as to evaluate the accuracy of 
XGBoost model, XGBoost predictions are evaluated via four evaluation 
criteria, including R2 value, RMSE, MAE and MAPE. The evaluation 
results are calculated and presented in Table 4. 
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Fig. 7. XGBoost-predicted residual strength vs. experimentally-determined re-
sidual strength (strength normalized for simplicity). 
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Fig. 8. XGBoost-predicted residual modulus vs. experimentally-determined 
residual modulus (modulus normalized for simplicity). 

Table 4 
Evaluation results of S-model and M− model.  

Evaluation criteria S-model M− model 

Training set Testing set Training set Testing set 

R2  0.98  0.93  0.90  0.85 
RMSE  0.02  0.06  0.04  0.05 
MAE  0.02  0.04  0.03  0.03 
MAPE  0.02  0.07  0.03  0.03  
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R2 value is used as the primary evaluation criterion for assessing the 
prediction accuracy of predictive models. First, for S-model for the 
tensile strength, R2 values of training set and testing set are all greater 
than 0.90, thus showing an excellent correlation between XGBoost 
predictions and experimental results. In fact, such a high prediction 
accuracy (R2 = 0.93 in this case) is the highest in the available literature, 
particularly when the prediction model is to be cross-validated using a 
great number of test results from many studies. In addition, for 
M− model for the tensile modulus of elasticity, R2 value of training set is 
0.90, while that value of testing set is 0.85. Such a discrepancy between 
the training set and testing set is also reflected in Fig. 8. The main reason 
for this lower R2 of testing set is that a much smaller database is avail-
able for developing the M− model. The volume of M− model dataset is 
204, while that number of S-model is 542. Despite having a lower R2 

value than S-model, the prediction accuracy of M− model (R2 = 0.85 in 

this case) is still sufficiently acceptable, particularly when compared to 
the other existing predictions. 

In addition to R2 value, RMSE, MAE and MAPE are used to conduct a 
secondary assessment with regard to the proposed XGBoost model. For 
S-model for tensile strength, all those errors are less than 0.07, and for 
M− model for tensile modulus, all those errors are less than 0.05. Such a 
small error (greatest error = 0.07, in this case) sufficiently demonstrates 
the excellent accuracy of both the S-model and M− model. 

5.2. Attribute importance analysis 

A number of factors may affect the residual mechanical properties of 
pultruded FRP composites subjected to environmental effects of water, 
high humidity and alkaline solution immersion. The possible influential 
factors may include the exposure time, exposure temperature, pH value, 
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Fig. 9. Attribute importance analyses of 
XGBoost decision tree model: (a) For S-model, the 
exposure time and temperature, and pH value of 
environment are the most important external fac-
tors, and the fiber volume fraction and plate thick-
ness are the most important internal factors. (b) For 
M− model, the most important factors are the same 
with those of S-model, except that the fiber volume 
fraction is shown to be more important than expo-
sure temperature in determining the residual tensile 
modulus.   
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plate thickness, fiber type, matrix type and fiber volume fraction. All 
these factors, together, have a combined effect on the mechanical 
properties of FRP composites, and their synergistic effect makes pre-
diction a challenging task for the field [10]. In this regard, XGBoost 
decision tree is adopted to analyze the attribute importance of each 
influential factor. 

XGBoost model is known to have a good interpretability in terms of 
the output results. All attributes pertaining to the prediction results can 
be quantitatively described using an F-score. F-score indicates the 
contribution of an attribute in XGBoost decision tree. For instance, the F- 
score of a particular attribute is to increase when this attribute is 
increasingly used in the tree decision process. The F-scores of all attri-
butes being investigated are calculated and presented in Fig. 9. The 
exposure time has the highest F-score for both the S-model and 
M− model. Thus, exposure time is the most influential factor of FRP 
degradation. Following exposure time, the exposure temperature and 
fiber volume fraction are the second and the third influential factors for 
S-model, while for M− model, the fiber volume fraction has a slightly 
higher F-score over exposure temperature. Then, for both the S-model 
and M− model, the pH value of environment and the plate thickness 
have a relatively significant effect on FRP composites. Finally, the fiber 
type and matrix type are observed to have the least impact on the re-
sidual mechanical properties of FRP composites. 

From attribute importance analysis, it can be confidently concluded 
that the external factors of exposure time, exposure temperature and pH 
value of environment and the internal factors of fiber volume fraction 
and plate thickness are the most important factors for determining the 
residual tensile properties of pultruded FRP composites subjected to 
water, high humidity and alkaline solution immersion. In particular, 
exposure time is known as the most influential factor in the FRP 
degradation process. In this regard, it has been recommended for future 
work (see corresponding section in [50]) that the exposure time shall be 
from one-and-a-half years to three years so as to capture the real 
degradation process of FRP composites. In addition, fiber volume frac-
tion and plate thickness are the inherent material properties that have a 

great impact on FRP degradation. Indeed, these two factors directly 
impact the degradation mechanisms of FRP composites. For instance, 
the degradation mechanisms of FRP composites immersed in water are 
shown in Fig. 1. The fiber content as well as the corresponding matrix 
content are identified to affect the degradation at fiber, matrix and 
interface levels. In conclusion, the findings from attribute importance 
analysis agree well with those reported in the literature. 

6. Model robustness tests 

6.1. Predictions of alkaline aging tests 

In this work, an independent dataset of long-term properties of 
pultruded FRPs subjected to alkaline conditions from Al-Salloum et al. 
[3] was selected to test the robustness of proposed XGBoost model. The 
pH value of environment is 12.8 and the exposure temperature is 50 ◦C. 
The specimens were FRP bars with diameter of 12 mm and made of glass 
fiber and vinyl ester resin with a fiber volume fraction of 83%. The test 
was conducted by up to 12,960 h. Note that this dataset was not used in 
the training process. The experimentally determined residual tensile 
strength and the corresponding XGBoost predictions are presented in 
Fig. 10. 

From Fig. 10, it can be seen that S-model could provide uniformly 
conservative predictions of residual tensile strength, and in those cases 
(exposure time = 4320, 8640, 12,960 h), the absolute differences be-
tween experimental results and model predictions are within 13%. In 
addition, using proposed S-model, the future trend of residual tensile 
strength can be predicted, as shown by the two blank dots in Fig. 10. 
These two dots represent the residual tensile strength measured at 
17,280 and 20,160 h. Note that 20,160 h is the highest exposure time in 
training set. 

6.2. Predictions of acidic aging tests 

In the proposed XGBoost model, environmental conditions of water/ 
high humidity and alkaline solution are differentiated by pH value, and 
these conditions with pH value less than 7 are automatically assumed to 
be the water condition. This assumption was also checked through a 
model robustness test. Due to the lack of acidic aging tests, only the test 
data (residual tensile strength, in this case) from Gentry et al. [34] was 
adopted in this work. The specimens were FRP plates with thickness of 
6.35 mm and made of glass fiber and vinyl ester resin with a fiber vol-
ume fraction of 22%. All the test information was input into the S-model 
and the predicted residual tensile strength were obtained, as shown in 
Table 5. 

Considering the proposed XGBoost model was not trained by any 
acidic aging test data, the absolute difference between experimental 
results and model predictions actually indicates the degree of degrada-
tion effect of acidic solution as compared to water. When pH value is 5 (i. 
e., weak acidic environment) under room temperature (23 ◦C, in this 
case), the greatest absolute difference between experiments and pre-
dictions is within 4%; hence, the aging effect of weak acidic solution is 
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Fig. 10. Alkaline aging test results (strength) and XGBoost S-model predictions.  

Table 5 
Acidic aging test results (strength) and XGBoost S-model predictions.  

Author Specimen pH 
value 

Exposure 
temperature (◦C) 

Exposure time 
(hours) 

Experimentally-determined residual 
tensile strength (MPa) 

XGBoost-predicted residual 
tensile strength (MPa) 

pred/ 
exp 

Gentry et al.  
[34] 

Control 7 23 0 403 –  – 
1 5 23 672 404 392  0.97 
2   2016 359 371  1.03 
3   5375 379 363  0.96 
4 3 23 168 392 416  1.06 
5   336 391 407  1.04 
6 3 80 168 307 319  1.04 
7   336 305 313  1.03 
8   672 242 278  1.15  
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Table A1 
Residual tensile strength of pultruded FRP composites subjected to water and high humidity.  

Author Fiber/ 
Matrix 

Vf Coupon 
thickness 
(mm) 

Coupon 
description 

Aging effect Exposure 
time 
(hours) 

Exposure 
temperature 
(◦C) 

Experimentally- 
determined residual 
tensile strength 
(MPa) 

XGBoost- 
predicted 
residual tensile 
strength (MPa) 

pred/ 
exp 

Shao and 
Kouadio [70] 

G/P  0.58 4.7 top flange of 
sheet pile 
panel 

control 0 23 433 433  1.00 

Gentry et al.  
[34] 

G/V  0.22 6.35 plate deionized 
water 

5376 23 394 362  0.92       

672 50 359 355  0.99       
2016 50 350 314  0.89       
168 80 302 318  1.05       
336 80 303 315  1.04 

McBagonluri 
et al. [57] 

G/V  0.29 3.175 plate control 0 23 212 212  1.00 

Chen et al.  
[19] 

G/V  0.51 9.53 
diameter 

rebar tap water 2880 23 732 747  1.02 

Chu and 
Karbhari  
[25] 

G/V  0.62 1.6 wet plate deionized 
water 

12,600 23 602 695  1.15     

dry plate deionized 
water 

1680 23 896 850  0.95       

3360 23 825 816  0.99       
1680 40 762 688  0.91       
3360 40 650 631  0.97       
12,600 40 533 496  0.93       
5040 60 521 542  1.04       
8400 60 449 422  0.94 

Kafodya et al.  
[42] 

C/E  – 1.4 plate distilled water 
0% strain 

672 23 2080 2166  1.04 

Lu et al. [51] B/E  0.71 1.4 plate distilled water 2160 20 1198 1167  0.97       
336 40 1471 1410  0.96       
1440 40 1226 1195  0.98     

135 ◦C aged 
plate 

control 2160 20 980 949  0.98     
distilled water 336 40 1452 1392  0.96     

300 ◦C aged 
plate 

distilled water 720 40 1060 1075  1.02       

1440 60 603 709  1.17       
2160 60 446 505  1.15 

Grammatikos 
et al. [36] 

G/P  0.45 6.4 plate distilled water 1344 25 373 392  1.05       

1344 80 353 314  0.89       
5376 80 326 318  0.97 

Heshmati et al. 
[39] 

C/E  0.69 1.25 plate distilled water 5040 20 2690 2660  0.99      

95% humidity 
distilled water 

20,160 45 1447 1748  1.21  

G/P  0.58 10 plate distilled water 5040 20 213 208  0.98       
20,160 20 166 189  1.14      

95% humidity 20,160 45 198 152  0.77 
Kim et al. [44] G/V  0.55 12.7 rod tap water 2160 25 554 596  1.07      

720 40 619 640  1.04       
3168 80 541 527  0.97  

G/ 
modified 
V  

0.50 12.7 
diameter 

rod control 0 25 661 654  0.99    
tap water 1440 25 500 559  1.12     

3168 25 580 547  0.95       
720 80 439 432  0.99       
1440 80 365 365  0.99  

G/V  0.30  strand distilled water 48 20 2748 2802  1.02      
480 20 2781 2646  0.95       
24 80 2129 2021  0.95 

Cabral-Fonseca 
et al. [14] 

G/P  0.68 5 box-section demineralized 
water 

6480 20 333 321  0.96     
4320 40 328 312  0.96       
12,960 40 340 328  0.95       
2160 60 326 318  1.00  

G/V  0.69 5 box-section control 0 20 393 405  1.03      
demineralized 
water 

4320 20 382 378  0.99       

2160 60 400 353  0.86       
4320 60 305 313  1.00       
8640 60 297 285  0.98       
4320 40 364 352  0.97 

Zhang [83] G/V  0.7 3 plate deionized 
water 

168 80 591 506  0.88  
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Table A2 
Residual tensile strength of pultruded FRP composites subjected to alkaline solution.  

Author Fiber/ 
Matrix 

Vf Coupon 
thickness 
(mm) 

Coupon 
description 

Aging effect Exposure 
time 
(hours) 

Exposure 
temperature 
(◦C) 

Experimentally- 
determined residual 
tensile strength (MPa) 

XGBoost- 
predicted 
residual tensile 
strength (MPa) 

pred/ 
exp 

Gentry et al. 
[34] 

G/V  0.22 6.35 plate  336 80 283 291  1.03 

Chu et al.  
[24] 

G/V  0.62 1.6 plate alkaline 
solution(pH 
= 11.5) 

8400 40 539 502  0.94       

2520 60 473 482  1.02       
5040 60 450 432  0.97       
8400 60 396 405  1.02       
8400 80 364 364  1.01 

Micelli and 
Nanni  
[58] 

G/P  6.35 
diameter 

rod control 0 23 2401 2329  0.97 

Chen et al.  
[19] 

G/V  0.51 9.53 
diameter 

bar  2880 23 751 751  1.00 

Kafodya 
et al. [42] 

C/E  – 1.4 plate Seawater 
30% strain 

336 23 1870 1934  1.03       

2016 23 2200 2265  1.03       
3360 23 2170 2084  0.96 

Lu et al.  
[51] 

B/E  0.71 1.4 plate alkaline 
solution (pH 
= 12.8) 

720 20 1327 1312  0.99      

2160 20 1107 1046  0.95      
336 40 1407 1422  1.01       
720 60 1128 1236  1.09       
1440 60 1001 1047  1.05     

135 ◦C aged 
plate 

control 
alkaline 
solution (pH 
= 12.8) 

720 60 1081 1081  0.99 

Heshmati 
et al. [39] 

C/E  0.69 1.25 plate saltwater 20,160 20 2319 2620  1.14      

20,160 45 1155 2006  1.74 
Chen et al.  

[18] 
G/V  0.51 9.53 

diameter 
rebar alkaline 

solution (pH 
= 13.6) 

2160 60 408 427  1.05 

Kim et al.  
[44] 

G/V  0.55 12.7 
diameter 

rod seawater (3% 
NaCl) 

1440 25 565 593  1.05      

3168 25 599 613  1.03       
720 80 621 580  0.93       
1440 80 558 530  0.96      

alkaline 
solution (pH 
= 13) 

720 25 523 572  1.10  

G/ 
modified 
V  

0.50 12.7 
diameter 

rod seawater (3% 
NaCl) 

720 40 592 599  1.02       

2160 40 538 525  0.98       
720 80 431 438  1.01      

alkaline 
solution (pH 
= 13) 

1440 25 547 488  0.90       

1440 40 539 473  0.87       
1800 40 532 466  0.87       
1440 80 327 334  1.03  

G/V  0.30 0.7 
diameter 

strand alkaline 
solution (pH 
= 13) 

2880 20 519 628  1.23       

720 80 176 126  0.69       
1440 80 140 168  1.25       
3600 80 82 55  0.60      

seawater (3% 
NaCl) 

240 20 2717 2529  0.93      

seawater (4% 
CaCl2) 

720 20 2376 2376  1.00 

Won et al.  
[76] 

G/V  – 12.7 
diameter 

rebar alkaline 
solution 

4320 20 600 621  1.04       

720 40 677 670  0.99       
7200 40 483 531  1.11       
720 80 564 550  0.98       
5760 80 482 461  0.95 

Sawpan et al. 
[69] 

G/E  – 14 diameter rebar concrete pore 
solution 

720 60 860 878  1.02 

(continued on next page) 
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similar to that of water, and the model is capable of providing accurate 
predictions. When pH value decreases to 3 (i.e., strong acidic environ-
ment), the absolute differences between experimental results and 
XGBoost predictions are still within 6% for those tests conducted by up 
to 336 h at 80 ◦C. Then, XGBoost prediction starts to differ from 
experimental result when FRP material was immersed in a strong acidic 
solution (pH = 3) at 80 ◦C by up to 672 h. This is consistent with those 
findings reported by Amaro et al. [4] and Feng et al. [32] that acidic 
solution has a great impact on mechanical properties of FRP composites 

only when the materials experienced a long aging period at a high 
temperature. It is noted that this model can be further improved when 
acidic aging test data is augmented. 

7. Conclusions 

In this work, an XGBoost decision tree-based predictive model was 
developed for calculating the residual tensile strength and modulus of 
pultruded FRP composites exposed to water, high humidity and alkaline 

Table A2 (continued ) 

Author Fiber/ 
Matrix 

Vf Coupon 
thickness 
(mm) 

Coupon 
description 

Aging effect Exposure 
time 
(hours) 

Exposure 
temperature 
(◦C) 

Experimentally- 
determined residual 
tensile strength (MPa) 

XGBoost- 
predicted 
residual tensile 
strength (MPa) 

pred/ 
exp 

Cabral- 
Fonseca 
et al. [14] 

G/P  0.68 5 box-section saltwater (35 
g/L NaCl) 

8640 20 348 368  1.06      

2160 40 419 382  0.92       
12,960 60 312 288  0.92  

G/V  0.69 5 box-section saltwater (35 
g/L NaCl) 

6480 20 317 356  1.12      
8640 20 373 397  1.06      
2160 40 393 401  1.02       
8640 40 354 354  0.99       
2160 60 373 357  0.96       
4320 60 322 326  1.01  

Table A3 
Residual tensile modulus of pultruded FRP composites subjected to water and high humidity.  

Author Fiber/ 
Matrix 

Vf Coupon 
thickness 
(mm) 

Coupon 
description 

Aging 
effect 

Exposure 
time 
(hours) 

Exposure 
temperature 
(◦C) 

Experimentally- 
determined residual 
tensile modulus (MPa) 

XGBoost- 
predicted 
residual tensile 
modulus (MPa) 

pred/ 
exp 

Shao and 
Kouadio [70] 

G/P  0.58 4.7 top flange of 
sheet pile 
panel 

distilled 
water 

6240 23 32,300 34,094  1.05    

0.37 3.2 web of sheet 
pile panel 

control 0 23 11,700 12,753  1.09      

distilled 
water 

504 100 13,800 11,578  0.84  

C/E  – 1.4 plate distilled 
water 
0% strain 

336 23 167,421 162,770  0.98      

distilled 
water 
50% strain 

3360 23 161,324 165,978  1.03 

Lu et al. [51] B/E  0.71 1.4 plate control 0 23 59,400 58,212  0.98      
distilled 
water 

2160 40 52,480 52,480  1.00     

135 ◦C aged 
plate  

2160 60 49,220 51,089  1.04     

300 ◦C aged 
plate  

2160 20 54,370 53,162  0.98       

2160 40 48,080 51,732  1.07 
Grammatikos 

et al. [36] 
G/P  0.45 6.4 plate distilled 

water 
672 60 25,000 24,123  0.96       

2688 60 25,000 25,000  1.00       
5376 80 27,000 25,244  0.94 

Heshmati et al.  
[39] 

C/E  0.69 1.25 plate distilled 
water 

5040 20 154,163 149,538  0.97       

20,160 45 151,404 156,039  1.03 
Kim et al. [44] G/V  0.55 12.7 

diameter 
rod tap water 720 25 33,123 34,278  1.04     

2160 25 29,834 30,996  1.04       
2160 40 35,002 31,156  0.89       
3168 40 28,738 28,355  0.99  

G/ 
modified 
V  

0.50 12.7 
diameter 

rod tap water 1440 80 38,821 39,248  1.01       

2160 80 39,950 38,675  0.96       
3168 80 35,086 33,374  0.95 

Al-Salloum 
et al. [3] 

G/V  0.83 12 diameter rebar tap water 4320 23 58,900 56,496  0.96 

Zhang [83] G/V  0.7 3 plate deionized 
water 

168 80 23,560 24,246  1.03  
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solution. XGBoost decision tree, as a machine learning technique, is 
capable of solving the nonlinear regression problems in various engi-
neering fields. To develop the XGBoost model, the FRP aging database 
created by Liu et al. [50] was used, and for the scope of this work, a total 
of 746 test data were collected, including 542 tensile strength data and 
204 tensile modulus data. In addition, detailed methodology of XGBoost 
decision tree was presented. The model predictions were found to have 
an excellent agreement with experimental results. Following conclu-
sions are drawn from this work.  

(1) A novel and effective approach for quantitatively predicting the 
durability based on the test data and the algorithm is presented. 
The machine learning analysis/evaluation framework—XGBoost 
decision tree—is demonstrated to be effective in predicting the 
residual tensile properties of pultruded FRP composites exposed 
to water, high humidity, and alkaline solution. The predictions 
were validated through a dataset with 108 tensile strength and 41 
tensile moduli. The R2 values for predicted tensile strength and 
moduli are 0.93 and 0.85, respectively. Having such an amount of 
cross-validations, the observed prediction accuracy of proposed 
XGBoost model is the highest in available literature. 

(2) The XGBoost decision tree model is able to provide a good pre-
diction interpretability. All the attributes of input data can be 
quantitatively analyzed regarding their importance, including 
the exposure time, exposure temperature, pH value of environ-
ment, fiber volume fraction, plate thickness, fiber type and matrix 
type. The exposure time and temperature were found to be the 
most important external factors, and the fiber volume fraction 
and plate thickness were the most important internal factors. 
Attribute importance analysis could readily serve as a guide for 
future research. 

(3) The proposed XGBoost model provides a new approach for solv-
ing the conventional engineering problems, particularly for those 
problems involving a number of influential factors. Additionally, 

this model can be continuously updated when necessary dataset 
is further enriched. This work only focuses on the tensile prop-
erties of FRP composites and only three environmental effects are 
considered. In the future, this XGBoost model can be updated to 
predict the compressive, shear and flexural properties of FRP 
composites subjected to various environmental effects. 

8. Data availability 

All data, models, and code generated or used during the study are 
available at the corresponding author. 
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Table A4 
Residual tensile modulus of pultruded FRP composites subjected to alkaline solution.  

Author Fiber/ 
Matrix 

Vf Coupon 
thickness 
(mm) 

Coupon 
description 

Aging effect Exposure 
time 
(hours) 

Exposure 
temperature 
(◦C) 

Experimentally- 
determined residual 
tensile modulus (MPa) 

XGBoost- 
predicted 
residual tensile 
modulus (MPa) 

pred/ 
exp 

Micelli and 
Nanni  
[58] 

C/E-V 
modified  

8.26 
diameter 

rod alkaline 
solution (pH 
= 13.0) 

1008 60 30,426 31,619  1.04 

Kafodya 
et al. [42] 

C/E  – 1.4 plate seawater 
0% strain 

2016 23 167,381 162,732  0.98      

seawater 
50% strain 

3360 23 173,452 170,355  0.99 

Lu et al.  
[51] 

B/E  0.71 1.4 135 ◦C aged 
plate 

alkaline 
solution (pH 
= 12.8) 

2160 20 51,870 51,870  1.00 

Heshmati 
et al. [39] 

G/P  0.58 10 plate saltwater 20,160 20 13,502 13,080  0.97      

5040 45 12,811 12,672  0.99 
Kim et al.  

[44] 
G/V  0.55 12.7 

diameter 
rod seawater 

(3% NaCl) 
720 25 35,094 33,551  0.96       

1440 40 28,776 29,927  1.04       
3168 40 28,608 28,608  1.00       
720 80 31,152 31,921  1.02      

alkaline 
solution (pH 
= 13) 

720 80 35,853 37,395  1.05  

G/ 
modified 
V  

0.50 12.7 
diameter 

rod seawater 
(3% NaCl) 

1440 40 38,683 38,258  0.98       

2160 40 36,613 36,613  1.00       
720 80 41,060 38,921  0.95       
3168 80 34,248 33,820  0.98 

Sawpan 
et al. [69] 

G/E  – 14 diameter rebar concrete 
pore solution 

1440 60 54,760 54,760  1.00     
2880 60 54,350 55,997  1.03  
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Appendix A. XGBoost-predicted residual tensile properties of 
pultruded FRP composites subjected to water, high humidity and 
alkaline solution 

In this section, XGBoost-predicted residual tensile properties as well 
as the detailed information regarding the aging tests are presented. Note 
that in Tables A1–A4, only the data from testing set is presented. The 
fiber and matrix types are designated following this rule: G for glass 
fiber, C for carbon fiber, V for vinyl ester resin, P for polyester resin and 
E for epoxy resin. For instance, the fiber/matrix composition denoted as 
G/V indicates the glass fiber reinforced vinyl ester resin matrix. 
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