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A B S T R A C T   

Fibers applied to reinforce the cementitious matrix exhibit a wide range of scales, from distributed carbon 
nanomaterials, chopped short fibers to continuous fibrous reinforcements. When a cementitious matrix is jointly 
toughened by reinforcing fibers at multiple scales, Multi-Scale Fiber Reinforced Cementitious Composite 
(MSFRC) tailored built on the micromechanics-based approach and bond-slip mechanism is proposed in this 
study. The composite actions of MSFRC, namely, tension stiffening, ductility enhancing and synergetic effects, 
are explained within a universal perspective. In addition, a 1-D numerical model using spring elements is 
developed to simulate the tensile behavior of MSFRC based on the crack band theory, fiber-bridging model and 
Monte Carlo simulation. The scales, types and contents of reinforcing fibers, interface behavior and stochastic 
nature can be considered in the model. Finally, it is found that the predicted mechanical response and crack 
evolution process match well with the experimental results obtained from literatures.   

1. Introduction 

As one of the most dominant construction materials worldwide, 
cement-based materials exhibit post-peak tension-softening behavior 
described by crack band theory [1]. The cementitious matrix needs to be 
toughened by reinforcing materials in practical structural applications 
due to the low tensile strength and rapid crack propagation. Continuous 
fibrous reinforcements are applied to improve the load carrying capac-
ity; the incorporation of chopped short fibers controls the cracking 
growth; the carbon nanomaterials refine the microstructure. To exploit 
the advantages of reinforcing fibers at different scales, the design 
strategy of Multi-scale Fiber Reinforced Cementitious Composite 
(MSFRC) is proposed in this paper, as illustrated in Fig. 1. By tailoring 
the characteristics of reinforcing fibers and mix composition, MSFRC 
can achieve the comprehensive utilization of reinforcing fibers to obtain 
the optimum mechanical performance. 

As shown in Fig. 2, all reinforcing fibers can be classified into three 
forms based on the geometric scale: the distributed carbon nano-
materials (CNMs) at the microscopic scale, chopped short fibers at the 
mesoscopic scale and aligned continuous fibrous reinforcements 
(referred to as continuous fibers) at the macroscopic scale. Based on the 
fiber bridging and toughening at the micro- and mesoscopic scales 
[6–9], short fiber reinforced cementitious composites (SFRCs) indicate 

that the cementitious matrix is reinforced by CNMs or chopped short 
fibers, including carbon nanotube (CNT)/cement composites, engi-
neering cementitious composites (ECC), ultra-high performance con-
crete (UHPC), recycled fiber reinforced concrete [10]. Another category 
is continuous fiber reinforced cementitious composites (CFRCs), e.g., 
reinforced concrete (RC), fiber reinforced polymer (FRP) textile rein-
forced cement (TRC). 

For CFRC with a moderate reinforcement ratio, the composite ac-
tions, characterized by the tension stiffening effect, tension softening 
effect of concrete and bond deterioration, were defined and discussed 
[11]. In design and construction, if a considerable tensile load capacity 
of a CFRC member is needed, a high reinforcement ratio can be con-
ducted accurately by constructional arrangements. However, it is known 
that wide cracks (generally from 0.2 mm to 4.6 mm) in CFRC members 
would form under overloading and cyclic-loading, which makes CFRC 
structures encounter the corrosion induced by the ingress of ions and 
performance degradations [12]. 

To improve the cracking resistance and energy absorption capacity, 
CNMs and chopped short fibers are applied to reinforce the cement- 
based material. SFRC with post-cracking tension-softening behavior, 
can be generally formed by reinforcing fibers at the micro- and meso-
scopic scales with untailored physical properties. On the other hand, 
strain-hardening behavior accompanied by the formation of tightly 
distributed cracks can be achieved, in combination with a proper design 
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of mix composition and tailored short fibers. The average crack width of 
the strain-hardening SFRC can be controlled to less than 100 μ m, 
making it a durable material under environmental exposures. However, 
the tensile performance of SFRC exhibits the limited load carrying ca-

pacity and strong variation due to the rheological behavior of the matrix 
[13], curing and construction conditions [14], the distribution of pores 
[15], fiber dispersion and agglomeration tendency [16]. 

The composites containing reinforcing fibers at multiple scales were 

Nomenclature 

Ar area of a single continuous fiber 
a, b empirical parameters defining the slip at ultimate bond 

stress 
c radius of matrix flaw 
cf bridging parameter 
cm matrix cover 
c0 scale parameter of Weibull distribution of flaw size 
cmc critical flaw size 
cckm the largest radius of the matrix flaws in the failure section 
cckf the largest radius of the composite flaws in the first 

cracking section 
Cclear clear distance between lugs 
erf(Vf ) error function of fiber volume fraction 
Em, Er, Ef elastic modulus of the matrix, continuous and short fiber 
f snubbing coefficient 
f ′ fiber strength reduction 
fc cylinder compressive strength of matrix 
fr yield strength of steel or ultimate strength of FRP 
ftk characteristic tensile strength of matrix 
ftm average tensile strength of matrix 
Fr interface frictional force along the continuous fiber 
Ff normal resultant force of the interface friction along the 

short fibers 
Fpulley resultant pulley force at the end point of the inclined short 

fibers 
F(c) cumulative distribution function (CDF) of the matrix flaw 

size 
g snubbing factor 
k brittle coefficient 
kα, kβ ascent and descent slopes of linear bond-slip relationship 
K confinement parameter 
Km, Kf matrix and composite fracture toughness 
lr, lf minimum crack spacing of continuous and short fiber 

reinforced cementitious composites 
l′r, l

′

f transmission length of continuous and short fiber 
reinforced cementitious composites 

lrf minimum crack spacing of multi-scale fiber reinforced 
cementitious composite 

lu damage propagation length 
Lf length of the short fiber 
L(Vf ) simplified CDF of fiber volume fraction 
m the number of bond springs between the crack springs 
m0 shape parameter of Weibull distribution of flaw size 
n the number of crack springs 
nc the number of opening crack springs 
p(θ), p(z) probability density functions of the random fiber 

orientation and location 
p(Vf ) probability distribution function (PDF) of fiber volume 

fraction 
P(Vf ) CDF of fiber volume fraction 
P0 interface friction of a single inclined fiber 
Ppully frictional pulley force of a single inclined fiber 
rf , rr radius of the short and continuous fiber 
s slip between concrete and tensile steel bar 

s1, s2 coefficients defining the relation between flaw size and 
fitting factor 

su slip at ultimate bond stress 
smax slip at the end of bond-slip relationship 
sfu slip at the beginning of the softening branch 
Sr perimeter of a single continuous fiber 
ur um axial displacements of the fiber and matrix 
U random occurrence of the minimum fiber content in the 

opening crack springs 
Vm, Vr, Vf matrix, continuous and short fiber volume fraction 
Vf0 short fiber design volume fraction in the mix proportion 
Vf1 ~Vfnc fiber volume fractions of the 1st ~ nc th crack spring 
Yf fiber correction factor 
Y1 geometric correction factor 
α disperse coefficient 
α1, α2 analytical coefficient for the linear bond-slip relationship 
β slip-hardening coefficient 
β1, β2 analytical coefficient for the nonlinear bond-slip 

relationship 
δck, δpb COD at cracking stress and ultimate bridging stress 
δ1, δ2, δmax critical COD in the multiple-stage relationship 
εmc, εpc strain at the end of the multiple-cracking zone and post- 

cracking zone 
Gf interfacial fracture energy 
Gd chemical bond strength 
ζ monotonically increasing function 
η composite modulus coefficient 
θ angle between the loading axis and inclined fiber 
λ1 nonuniformity coefficient of crack development 
λp percentage error for the conversion from a normal 

distribution to a uniform distribution 
λθ angle distribution coefficient 
σr tensile normal stress of the continuous fiber 
σr0 normal stress of the continuous fiber at the fixed end 
σrl normal stress of the continuous fiber at the loading end 
σrlu normal stress of the continuous fiber at the damage 

propagation length 
σckf mean tensile strength of composite members 
σmc average ultimate strength of the composite members 
σmu cracking strength at the crack plane 
σck, σpb composite cracking strength and ultimate bridging 

strength 
σ1, σ2 critical bridging stress in the multiple-stage relationship 
τf short fiber-matrix bond strength 
τr residual bond strength 
τr average bond strength along the matrix-continuous fiber 

interface 
τu bond strength between continuous fiber and matrix 
τue modified bond strength between continuous fiber and 

matrix 
τfu bond strength between continuous fiber and composites 

containing short fibers 
τfrs interfacial shear stress of the continuous fiber 
υ standard deviation of normal distribution of fiber volume 

fraction 
χ fitting factor for cracking strength  
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proposed firstly as externally bonded composite systems for strength-
ening existing structures [17], and could also be applied in the con-
struction of thin-walled structures, ocean structures [18] and permanent 
formworks [19], as alternatives to CFRCs or SFRCs. The mechanical 
behavior of the composites, including ECC-FRP [20–22], UHPC-FRP [18, 
19], ECC-steel bar [23–25], UHPC-steel bar [26], etc., has been inves-
tigated experimentally. It was found that the mechanical performance 
was critically determined by the synergetic effect between reinforcing 
fibers at different scales and stochastic nature. Then, several theoretical 
models [27,28] and numerical approaches [29] have been proposed for 
the mechanical behavior of a particular kind of composites. However, a 
compatible and universal model, which can simulate any composite 
containing one or more reinforcing fibers with the consideration of 
stochastic nature, has not yet been developed. 

In this paper, MSFRCs are proposed to systematically describe the 
tensile behavior of the composites. Then, the composite actions of the 
MSFRCs, namely, the synergetic effects on the bond performance and 
cracking behavior, tension stiffening and ductility enhancing effects, are 
discussed in terms of the bond-slip mechanism and fiber-bridging model. 
In addition, a 1-D numerical approach using spring elements is devel-
oped to predict the tensile response and crack description of the 
MSFRCs. Finally, the tensile response and crack propagation of six in-
dependent experiments obtained from literatures are simulated to verify 
the reliability of the developed model. 

2. Mechanisms for MSFRC in tension 

The matrix reinforced with fibers at multiple scales is named as the 
Multi-Scale Fiber Reinforced Cementitious Composite. The mechanical 
behavior and failure modes of the composites vary significantly with the 
physical properties of reinforcing fibers and the mix proportion. And, 
the MSFRC presents tensile characteristics of both CFRC and SFRC at the 
same time, but it is much more complex. Thus, the theoretical and nu-
merical approaches for CFRCs and SFRCs will be first discussed in this 
section, respectively. Then, the failure modes and composite actions of 
MSFRCs are summarized and described based on the published 
experiments. 

To abstract the mechanical model for 1-D uniaxial tensile behavior, 
seven basic assumptions are summarized: 1) fibers are only subjected to 
the bond force along their longitudinal axial direction, 2) bond behavior 
is driven by the sliding friction with a constant friction coefficient, 3) 
Poisson’s ratio of all materials is ignored, 4) the displacements of the 
matrix in the same cross section have the same value, 5) all matrix cracks 
occur at a certain tensile stress, 6) the softening phase of cementitious 
matrix is ignored, and 7) reinforcing fibers behave in the elastic state 
during the whole loading process. 

2.1. Tensile behavior and modeling of the CFRC system 

How to present the effect of composite actions is the research focus of 
the tensile behavior of CFRC system. First, Aveston-Cooper-Kelly (ACK) 
theory based on the seven assumptions was proposed to establish a 1-D 
linear model [30], and Fig. 2(f) shows a typical tensile stress-strain 
response for CFRC. In the multiple-cracking stage, the stress in the 
continuous fibers is gradually transferred to the matrix away from the 
cracked plane upon crack formation. In this scenario, the minimum 
crack spacing can be calculated by the equilibrium condition along the 
loading axis for the matrix between two cracks: 

σmuVm= Fr (1)  

where Fr = lrτrSrVr/Ar is the interface frictional force along the 
continuous fiber. The minimum crack spacing of CFRC can be written as: 

lr =
σmuVmrr

2Vrτr
(2)  

where rr = 2Ar/Sr is the equivalent radius of continuous fibers, and Ar 
and Sr are the area and perimeter of a single continuous fiber, respec-
tively. Vm and Vr are the matrix and continuous fiber volume fraction 
(reinforcement ratio), respectively. τr is the average bond strength along 
the matrix-continuous fiber interface. The cracking strength σmu at the 
crack plane can be taken as the average tensile strength of matrix ftm. 

According to assumption 5), all cracks tend to open and extend with 
the same crack spacing at the same time. However, since the cracking 
strength at different matrix planes follows a random distribution based 
on the weakest link theory [31], the crack always occurs in the link with 
the largest flaw size rather than forming uniformly. Then, for most 
CFRCs including steel or FRP bar reinforced concrete, the composite 
strains at the end of the multiple-cracking zone and post-cracking zone 
(i.e., εmc and εpc) can imply the tension stiffening effect, which can be 
calculated by the average strain of the continuous fiber according to the 
ACK theory [30]. Furthermore, the β-ellipse model [11] was proposed to 
consider the nonlinear bond-slip behavior and tension softening rela-
tionship of quasi-brittle material, instead of linear sliding friction and 
simplified post-cracking behavior based on assumptions 2) and 6). In 
addition, especially for TRC, the core and sleeve model [32] can be used 
to describe the unique bonding mechanism of FRP textile [33]. 

To consider the modifications and extend the 1-D model, advanced 
numerical methods are required. Depending on whether the interface 
and cracks are expressed as the geometrical discontinuity in the 
displacement field, the numerical methods for CFRC can be divided into 
the smeared and the discrete crack approaches. For CFRC with a suffi-
cient reinforcement ratio, both approaches can yield mesh-independent 
solutions [34,35]. In addition, since the discontinuum is assumed a 
priori with the traction-separation law, the discrete crack approach is 

Fig. 1. Sketch of multi-scale fiber reinforced cementitious composite.  
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applicable to obtain the details of each crack and address the issues 
associated with the complicated interface [35]. 

2.2. Tensile behavior and modeling of the SFRC system 

The micromechanics-based approach for predicting the fiber- 
bridging behavior of chopped short fibers and CNMs, has been exten-
sively investigated. Tension-softening SFRC can reach a higher cracking 
strength and energy absorption capacity than ordinary cementitious 
matrix due to the fiber bridging effect, as well as the nucleation and 
filling effects of CNMs [36–38]. However, the bridging stress-crack 
opening displacement (COD) relationship proceeds into a tension soft-
ening branch after matrix cracking, resulting in the low resistance to 
cracking. In other words, tensile behavior of the composite is similar to 
that of the CFRC with insufficient reinforcements. The crack band 
widths of these composites can be obtained by the trial-and-error 
approach [39]. 

For strain-hardening SFRC, the snubbing coefficient f was introduced 
to describe the amplification of the bridging force by the frictional 
pulley force Ppully , when the inclined fiber at the angle θ with the loading 

axis was pulled out. Then, with assumptions 2)-7), the simplified 
bridging stress-COD relationship was presented by Li and Leung [6], and 
the minimum crack spacing lf is given in Appendix A. Furthermore, 
considering the nonlinear behavior during the fiber debonding and 
pull-out stage, the modified crack spacing model and fiber-bridging 
model were developed [7] by introducing chemical bond strength Gd, 
slip-hardening coefficient β and fiber strength reduction f ′ . 

According to the weakest link theory, material heterogeneities affect 
the crack formation of SFRC, which is similar to the cracking pattern of 
CFRC. To address this issue, physical properties of the composite need to 
be considered as the random variables, including the inherent defect of 
matrix and the scatter of fibers. First, the methods for quantitative 
evaluation were proposed to define the statistical distribution of the 
random variables, such as detecting the cross section sliced from the 
specimen [40], transmission X-ray photography [41], etc. Then, two 
stochastic processes were proposed to assign the random values for the 
stochastic model. The stochastic process based on the morphology [7] 
can present the correlation of random variables between adjacent ele-
ments to a certain extent. Alternatively, another stochastic process based 
on the statistics of extremes [42–44] becomes a desirable method, since 

Fig. 2. Schematic of multi-scale reinforcing fibers and the tensile performance of the composites: (a)–(c) the material types and geometry properties of reinforcing 
fibers in SFRC and CFRC (The electron microscopy image of CNT is from Ref. [2]. Tension-softening SFRC can convert into strain-hardening SFRC by modifying the 
physical properties and controlling the surface roughness of reinforcing fibers [3–5]. The untailored properties of fibers, which would lead to the tension-softening 
SFRC, are as follows: for carbon chopped fibers, Lf = 6–12 mm, rf = 3.4~6 μm, Ef = 48–268 GPa, σfu = 690–4600 MPa and Vf ≤3%; for PP chopped fibers, Lf = 8 
mm, rf = 8.3 μm, Ef = 3.5–11.6 GPa, σfu = 400 MPa and Vf ≤2%), (d)–(f) cracking patterns and typical tensile behavior of the CFRC, tension-softening and 
strain-hardening SFRC, and (g)–(i) bridging representations of reinforcing fibers under the individual scale level. 
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fewer random variables are acquired. 
To simulate the uniaxial tensile behavior of SFRC and investigate the 

influence of random variables, several stochastic numerical models were 
developed based on the discrete crack approach, which can be divided 
into the fixed spacing approach and regular spacing approach. The fixed 
spacing approach was proposed in the literature [44,45] based on crack 
springs with a spacing of lf . In this case, the random variables in different 
sections can be assumed to be independent, since the sequence of the 
cracks would not change the failure pattern. Although the distances 
between opening cracks are multiples of lf , the average crack spacing 
still agrees quite well with the test results. For the regular spacing 
approach proposed in the literature [7,42,43], once the stress of the 
intact crack element exceeds the cracking strength, an additional ex-
amination should be conducted to ensure that the intact element is not 
within lf of the existing cracks. This approach focuses on the details of 
each crack, and the modified crack spacing model can be applied. Based 
on the probability theory, the amount of the random variables under the 
independent and identically distributed assumption increases with the 
growth of mesh density, which may lead to a lower expected value of the 
weakest link. Thus, the stochastic process with the position-dependent 
probability is suggested to ensure the mesh independence for regular 
spacing approach. 

2.3. Composite actions of the MSFRC system 

Current studies on tensile response demonstrate that effective 
cooperation can be achieved between the reinforcing fibers at multiple 
scales until failure occurs in one of them. Based on the failure sequence 
of the reinforcing fibers, the tensile behavior of MSFRC can be divided 
into three modes: 1) the end of the elastic stage for continuous fibers 
(rupturing for FRP and yielding for steel) occurs first; 2) the softening of 
fiber-bridging relationship for short fibers occurs first; 3) the simulta-
neous failure, from tensile experiments [20,25], represents that the 
bridging stress of short fiber and the tensile stress of continuous fiber can 
reach the ultimate state at the same time, even if the SFRC exhibits a 
lower ultimate strain individually than that of the continuous fiber. 

Since the synergetic effect between the reinforcing fibers at different 
scales, the composite actions of CFRCs also exist in MSFRCs but show 
different mechanical behavior, that is, the fiber bridging effect can bring 
more unique effects. Therefore, according to the fiber-bridging model 
and bond-slip mechanism, composite actions in MSFRCs are presented 
as follows:  

(1) Synergetic effect on bond-slip performance 

The bond behavior of continuous fibers in SFRC is quite different 
from that in the brittle matrix. The fiber bridging force along the 
circumferential direction can present the confinement effect to restrain 
the extension of internal cracks. Therefore, the SFRC shows the perfor-
mance of withstanding larger circumferential deformation and 
enhancing higher sliding friction than brittle matrix. On the other hand, 
the axial component of the bridging force can optimize the orientation of 
the principal stresses and effectively arrest splitting cracks [46]. Due to 
the nucleation effect, the addition of CNMs also can improve the bond 
between other reinforcing fibers and matrix [47,48].  

(2) Synergetic effect on cracking behavior 

The short and continuous fibers at the crack planes become engaged 
after matrix cracking. In other words, the discontinuous crack opening 
will activate the interfacial friction of the matrix-reinforcing fibers, and 
the tiny pulled slip of short fibers at the crack is compatible with the 
deformation of the continuous fiber. Thus, the combination of the 
reinforcing fibers can participate in the transferring force between 
cracks, which has a great influence on the crack spacing [27,28]. In this 

paper, the theoretical formula of the minimum cracking spacing will be 
discussed in the next section. On the other hand, the tension-softening 
behavior of matrix for CFRC should be replaced by fiber-bridging 
behavior as the traction-separation law. In this situation, the mesh 
convergence for the discrete crack approach need to be studied.  

(3) Tension stiffening effect in the multiple-cracking stage 

For MSFRC, the external force can be greater than that of either 
composite and it keeps increasing with the formation of multiple fine 
cracks due to the strain compatibility. In terms of the bond mechanism, 
the improvement of bond strength and the decrease of the crack spacing 
have the opposite effect on the stress distribution along the continuous 
fiber. In previous studies, it was found that the εmc obtained from 
experimental results was close to the strain of continuous fibers at the 
end of the elastic stage [24,25]. In contrast, several results indicated the 
opposite phenomenon in which the nonuniformity along the rebar was 
greatly increased [23,26], possibly due to the matrix shrinkage. There-
fore, the extent to which the experimental results conducted thus far are 
suitable remains problematic for theoretical analysis purposes.  

(4) Tension stiffening effect in the post-yielding stage (crack 
localization) 

For RC tensile members, the residual bond between the continuous 
fiber and matrix can lead to the early rupture of the steel bar in post- 
yielding stage, as shown in Fig. 3(a). Since large deformations are not 
allowed in structural design, there are few studies on the rupture strain 
of steel bar in RC members. However, compared with RC members, an 
early fracture mode of MSFRC, characterized by sudden failure and 
crack localization in one or a few dominantly wide cracks, has been 
observed in recently reported experiments [24,26], and the crack 
localization will lead to a much lower ultimate strain. As explained in 
Fig. 3(b), the minute crack opening displacement provides the precon-
dition for the concentrated crack pattern, and the crack localization 
phenomenon is related to the Vr, Vf and short fiber dispersion [49]. As a 
result, the crack localization should be avoided in any structural mem-
ber to preserve its deformation capability.  

(5) Ductility enhancing effect 

For the MSFRC members characterized by the simultaneous failure 
mode, the pseudo-ductility of SFRC under the reinforcement of the 
continuous fibers can be enhanced, and the phenomenon is referred to as 
the ductility enhancing effect in this paper. Fig. 4 presents the mecha-
nism of the ductility enhancing effect based on the probabilistic analysis. 
During the whole loading process, the 2nd crack remains intact since 
σck,2 > σpb,1, as shown in Fig. 4(a). However, when the SFRC is rein-
forced with continuous fibers, the stress of the 2nd crack can be 
increased due to the bond contribution, which would lead to matrix 
cracking in the 2nd crack. Then, the extension of crack widths in the 1st 
and 2nd cracks contribute to a higher pseudo-ductility at the composite 
level. In conclusion, the analysis of the ductility enhancing effect re-
quires a probabilistic approach based on the statistical distribution, as 
well as the crack localization phenomenon. 

3. Modeling for MSFRC in tension 

A stochastic numerical approach is created to simulate the tensile 
behavior for MSFRC. To simplify the uniaxial specimen as multiple 
parallel elements, the basic assumptions 3) and 4) are applied. In 
addition, the stochastic process based on the statistics of extremes and 
the fixed spacing approach proposed in the literature [44,45] are used, 
in other words, the length of each uncracked matrix element is the 
minimum crack spacing lrf . 

Fig. 5 shows the basic truss-spring system of the 1-D numerical 
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model. The uncracked matrix and continuous fiber are both simulated as 
the continuum truss elements. Several sets of shear spring elements, 
describing the bond performance, are applied to connect the matrix el-
ements with the continuous fiber elements. The relationship of bond 
elements reflects the tension stiffening effect. In addition, there are 
tensile spring elements between matrix continuum elements, where the 
tension softening effect of the matrix and the fiber-bridging mechanism 
can be expressed. Two types of random variables are applied to repre-
sent the stochastic nature, and Monte Carlo simulation is performed to 
determine the effect of the stochastic nature on the composite tensile 
behavior. 

As discussed above, two kinds of springs are used to capture the 
details of the crack width and modify the constitutive law with respect to 
various fiber types and material randomness. In this way, the developed 
model deteriorates into the CFRC model when the crack spring elements 
are described by the tension softening relationship of concrete, and into 
the SFRC model when Vr = 0. Hence, it is necessary to obtain the 
constitutive laws for each element and the minimum crack spacing. 

3.1. Stress-COD relationship for crack spring element 

As illustrated in Fig. 6, the multiple-stage stress-COD relationship is 
applied on the basis of the research [44]. The stress fluctuation caused 
by the sudden energy release of matrix cracking is replaced by the 
constant stress phase to reduce the iterations in the convergence process. 
When the mechanical properties of short fibers have been acquired by 
the high-accuracy experiments for a single fiber, the relationship can be 
determined by appropriate theoretical model: β-ellipse model for con-
crete [11], fiber-bridging model for SFRC containing chopped short fi-
bers [6,7]. In the absence of the mechanical properties, direct test 
methods can be conducted to determine the relationship [50]. 

3.2. Random variables for crack spring element 

To present the ductility enhancing effect and the crack localization, 
the matrix flaw size c and fiber volume fraction Vf are simulated as the 
independent and identically distributed random variables. Then, n 
couples of (c,Vf ) are generated and are assigned to each crack spring by 
stochastic processes. Therefore, the distribution functions and the re-
lationships associated with the variables and fiber-bridging law need to 
be identified. 

3.2.1. Matrix flaw size and cracking strength 
Based on the weakest link theory, the matrix flaw size is assumed to 

follow the Weibull distribution, and the cumulative distribution func-
tion (CDF) can be described as follows: 

Fig. 3. Difference in the crack pattern between CFRC and MSFRC at the ultimate limit state.  

Fig. 4. The mechanism of the ductility enhancing effect.  
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F(c) = 1 −

{

exp
[

−

(
c
c0

)m0
]} L

L0 (3)  

where c0 and m0 are the scale parameter and shape parameter, cali-
brated by fitting the statistical data. The power law scaling defined as 
the element length L to the reference length L0, could be considered as 1 
based on the independent and identically distributed assumption. 

According to linear elastic fracture mechanics (LEFM), the formu-
lation about the cracking strength σck, matrix fracture toughness Km, c 
and fiber mechanical properties can be established. For the brittle ma-
trix, σck can be written as: 

σck =
Km
̅̅̅̅̅̅̅
Y1c

√ (4)  

where Y1 is the geometric correction factor. Specifically, Y1 = π for the 
central straight crack and Y1 = 2/π for the penny shaped crack. For 
SFRC, the contribution of fiber bridging should be added to the crack as 
cohesive traction, and σck of SFRC given by Li [6] is rewritten as: 

σck =
Kf
̅̅̅̅̅̅̅̅̅̅̅
Y1Yf c

√ (5)  

where Kf = (1+η)Km corresponds to the fracture toughness with 
consideration of the short fiber contribution. Moreover, Yf , the fiber 
correction factor considering the fiber bridging effect, is rewritten as: 

Yf =
1

1 − Y2c + Y3c3
4

(6)  

Y2 =
Y1σpb

(
1 − v2)

πδpbηVmEm
(7)  

Y3 =
4
3

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Y1Y2σpb

Kf

√

(8) 

Hence, Eq. (5) becomes (4) when Vf = 0. Nevertheless, for a small 
initial crack, the theoretical formulation based on LEFM tends to over-
estimate the cracking strength due to the fracture process zone [51]. 
Thus, Yf in Eq. (5) can be replaced by the fitting factor χ in a similar form 
based on the research by Huang and Zhang [44]: 

χ =
1

c/s1 + 1/s2
+ 1 (9)  

where s1 and s2 are the coefficients to consider the fracture process zone 
and reinforcing mechanism of fibers at micro- and mesoscopic scales. To 
calibrate the parameters, three sets of (c, σck) determined from experi-
mental data, are provided by the following: (cckm, ftm) the mean tensile 
strength of the matrix obtained by material standard tests and the largest 
radius of the flaws in failure sections; (cckf , σckf ) the mean cracking 
strength of composite members and the largest radius of the flaws in the 
first cracking sections; and (cmc, σmc) the average ultimate strength of the 
composite members and the largest radius of the flaws in failure sec-
tions. cmc also represents the critical flaw size, which can be evaluated by 
combining Eq. (5) and σck = σmc [45]. 

The flaw sizes cckm and cckf of CFRC specimens in the failure sections 
are generally not measured. In this case, s1 and s2 can be deduced by 
using the definition of the mean tensile strength ftm and characteristic 
tensile strength ftk: 

E(σck(c, s1, s2)) = ftm (10) 

Fig. 5. Details of the proposed numerical model.  

Fig. 6. Simplified constitutive law 
for crack spring element in tension. 
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Pr
(
c < cckf

)
= 0.95 (11) 

Eqs. (10) and (11) imply that the average cracking strength is equal 
to ftm, and only less than 5% of the crack springs would fail as the stress is 
less than ftk. In addition, ftk can be expressed by ftm according to the 
Chinese concrete design code [52]: ftk = ftmk(1 − 1.645α); k and α are 
the brittle and disperse coefficients, respectively. 

3.2.2. Fiber volume fraction and ultimate bridging stress 
The fiber volume fraction of each crack spring element can be 

regarded as an inherent property. Assuming that Vf follows a normal 
distribution, p(Vf ) can be given by: 

p
(
Vf
)
=

1
̅̅̅̅̅̅̅̅̅̅
2πυ2

√ exp

[

−

(
Vf − Vf 0

)2

2υ2

]

(12) 

In this distribution, Vf0 stands for the expected value, which is equal 
to the design volume fraction of short fibers in the mix proportion; υ, the 
standard deviation of the distribution, can be obtained by fitting the 
statistical distribution from the sampling measurements. The ultimate 
strength in the particular section can be obtained by assuming that σpb is 
proportional to the fiber content Vf via [50]. However, since few ex-
periments have captured fiber dispersion data, a fitting method is pro-
posed to estimate p(Vf ). The υ can be obtained via the expectation of the 
random occurrence U = min(Vf1,Vf2,…,Vfnc): 

E(U) =
σmc

σpb
Vf 0 (13)  

where nc is the number of opening crack springs. Vf1 ~Vfnc are the fiber 
volume fractions of the 1st~ nc th crack spring. Once the flaw size dis-
tribution and cmc are identified, nc can be predicted in terms of the 
number of all crack springs n by the following: 

nc = (1 − F(cmc))n (14) 

The derivation of lrf is given in Section 3.4. However, it is a concern 
that nc cannot be calculated when the flaw size distribution and cmc have 
not been determined statistically. In this scenario, nc is given in terms of 
the average peak strain measured by the test εpb as follows: 

nc =
εpblrf (n + 1)

λ1δpb
(15)  

where λ1 empirically describes the nonuniformity of crack development, 
and λ1 = 0.8. Then, in terms of the CDF P(Vf ), the expectation of U is 
derived as: 

E(U) =

∫ ∞

− ∞
ncVf

(
1 − P

(
Vf
))nc − 1p

(
Vf
)
dVf (16) 

Based on the above analysis, υ can be solved by substituting Eq. (16)
into (13). To simplify the calculation process, the linear CDF L(Vf ), i.e., 
the uniform distribution defined in [Vfm,2Vf0 − Vfm], is implemented to 
approximate P(Vf ). Then, Eq. (16) can be rewritten as: 

E(U) = Vfm +
2
(
Vf 0 − Vfm

)

nc + 1
= L− 1

(
1

nc + 1

)

(17) 

An accurate approximation of the normal distribution integral was 
provided by the error function defined as erf(Vf ) = (2 /

̅̅̅
π

√
)
∫ Vf

0 exp( −
t2)dt. By substituting P(Vf ) = λpL(Vf ) into Eq. (17), υ can be determined 
by the following: 

v =

(σmc

σpb
− 1
)

Vf 0

̅̅̅
2

√
erf − 1

(
2λp

nc + 1
− 1
) (18)  

where λp represents the percentage error for the conversion from a 

normal distribution to a uniform distribution, and λp = 1 approximately 
based on the simulated results. 

3.3. Constitutive relationship for the truss elements 

The constitutive relationship of the uncracked matrix can be 
described by the linear elasticity. For steel or FRP rebar, the stress-strain 
constitutive relationship can be applied by the response from the ma-
terial tensile tests. In the absence of the complete measured curve, a 
monotonic stress-strain model with four parameters for steel [53] and 
linear relationship for FRP can be implemented for the truss elements. 
For FRP textile, the core and sleeve model can be adopted to describe the 
unique phenomena, such as nonuniform stress distribution and initial 
slack [32]. However, the details of the initial waviness and the 
filament-filament bond mechanism have not been investigated thor-
oughly, simulations for composites containing FRP textiles will be car-
ried out in future research. 

3.4. Local bond-slip relationship for the bond spring element 

Bond-slip constitutive relationships for CFRC and MSFRC described 
in Fig. 7 are applied according to the synergetic effect on the bond 
performance. The simplified bond-slip model of CFRC with the linear 
softening branch proposed by Haskett [54] is applied in this paper: 

τ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

τu

(
s
su

)0.4

(s ≤ su)

(

19a

)

τu
smax − s
smax − su

(su < s ≤ smax)

(

19b
)

where τu, su, smax and Gf are defined in Fig. 7. The bond strength can be 
given by τu = 2.5

̅̅̅̅
fc

√
. The parameter su is suggested by Lin [55] as 

follows: 

su = 0.12Cclearζ(K) (20)  

ζ(K) =
1

1 + aebK (21)  

where Cclear is the clear distance between lugs. The confinement 
parameter K = cm/2rr for plain concrete, represent the confinement ef-
fect by matrix cover cm. The empirical parameters a and b can be 
determined through regression analysis based on the test results. Inter-
estingly, according to the improved pull-out tests in the literatures [56], 
the value of su is approximately 0.05 mm, far lower than the results of 
the traditional pull-out test of 0.3~2 mm. This difference is attributable 

Fig. 7. Local bond-slip constitutive laws 
for bond spring element. 
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to the comprehensive stress state of the rebar-matrix interface. The 
improved pull-out test are pulled from both sides of the continuous fiber, 
and the matrix stress state is close to that of the uniaxial tension test 
[57]. Thus, the results of the improved pull-out tests are adopted to 
calibrate a and b for su. The parameter smax, which governs the 
descending branch of the bond-ship constitutive relationship, presents 
high scatter for determining the precise value due to the brittle inter-
facial behavior [58]. Thus, the difference between smax and su is regarded 
as a constant value in this research and determined from the test results. 

For MSFRC, the bond-slip constitutive model proposed by Harajli 
[59] is applied with respect to the synergetic effect on the bond mech-
anism. The relationship of MSFRC can be determined expediently from 
the relationship of RC in terms of the bridging parameter cf as follows: 

τfu = cf τu (22)  

where cf = 1 + 0.34
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Vf Lf/2rf − 0.25

√
for VfLf/2rf ≥ 0.25 and cf = 1 for 

Vf Lf/2rf ≤ 0.25. sfu = 2.33su implies the improvement of the ultimate 
interfacial ductility. The residual bond strength τfrs can be taken ac-
cording to the experimental results. 

3.5. Minimum crack spacing for matrix element length 

Since the stress transferred by interaction within the minimum crack 
spacing lrf cannot reach the matrix strength, lrf is utilized as the length 
between the crack spring elements. The interfacial forces of both 
continuous and short fibers are transferred to the matrix through Fr, Ff 

and Fpulley, and the equilibrium condition of the matrix plane can be 
derived: 

Ff + Fpulley + Fr = σmuVm (23) 

The released stress of the matrix cracking is completely carried by 
short fibers and continuous fibers in the cracking plane, and the inner 
force for a single fiber P0 can be acquired by: 

P0 =
(σmuVm − Fr)

gVr
πr2 (24)  

Then, the resultant pulley force for MSFRC can be rewritten as: 

Fpulley = (σmuVm − Fr)

(

1 −
1

λθg

)

(25) 

Substituting Fpulley, Ffriction and Fr into Eq. (24), the minimum crack 
spacing lrf for MSFRC can be derived as: 

lrf =

(
1 +

l′f
l′r

)

Lf −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
((

1 +
l
′

f

l′r

)

Lf

)2

− 4Lf l
′

f

√
√
√
√

2

(26)  

where l′f = σmuVmrf/(gVf τf ) and l′r = σmuVmrr/(2Vrτr) are defined as the 
transmission lengths of the short and continuous fibers, respectively. τr 
is the average bonding strength along the matrix-continuous fiber 
interface, which can be obtained from the global bond-slip response. 
Since the local bond-slip relationship is utilized in this numerical 
method, it is necessary to provide a connection between the global and 
local response. The bond mechanism and details for calculating τr by the 
pull-out model are described in Appendix B. Then, lrf can be determined 
by combining τr and Eq. (26). 

If Eq.(26) have a real positive root, lrf <lf and lrf <lr hold, indicating 
that average crack spacing of MSFRC can be constrained effectively with 
a range of about 2–10 mm [22,23]. In the absence of a real root, lrf 
deteriorates into lr due to the limited enhancement of short fibers, and 
the average spacing of CFRC is generally around 100 mm [28,60]. Since 
the crack spacing of CFRC are at least one order of magnitude higher 
than that of MSFRC, the critical τr can be approximated by the extreme 

value at lrf →0: 

τr =
rr

2lrf

⎡

⎢
⎢
⎣

σrlu cos
(
β1lrf

)
+

2τu

β1rr
sin
(
β1lrf

)

1 −
β2

β2
1
+

β2

β2
1

cos
(
β1lrf

) − σrlu

⎤

⎥
⎥
⎦ (27) 

It is found that τr approaches τu as lrf →0. As explained above, when 
the strain-hardening conditions are satisfied by fiber and interface 
tailoring, τr can be simplified to τu. Then, lrf can be easily determined. 

4. Model validation for MSFRC in tension 

Six independent tensile experiments are simulated based on ABAQUS 
to assess the accuracy of the proposed approach. For each simulated 
example, all of the input model parameters can be determined by the 
calibration method as described in Section 3. A summary of the input 
data is shown in Tables 2 and 3. The analyses with ten repeated sto-
chastic models for each specimen are conducted in the Monte Carlo 
simulation. 

First, three kinds of SFRCs are studied in the simulations, while the 
physical factors of different fibers and the stochastic parameters are 
calibrated. Next, a series of direct tensile RC members are simulated to 
match the mechanical response and crack evolution process with the 
experimental results. Finally, on the basis of the above models of CFRC 
and SFRC, two forms of MSFRC, namely, UHPC-steel rebar and ECC-FRP 
grid, are modeled and examined in terms of the composite actions. 

4.1. Simulation and verification for PVA-ECC, UHPC and PE-ECC 

When the matrix is only toughed by short fibers, the proposed model 
changes to the fixed spacing approach developed. First, for ECC speci-
mens, most physical parameters and matrix flaw size distributions have 
been previously measured in the experiments reported by Wang [40] as 
listed in Table 3. Then s1 and s2 can be calibrated by substituting (cckf ,

σckf ) and (cmc, σmc) into Eq. (5) and (9). Specifically, c0 = 0.97, m0 =

2.12, s1 and s2 are applied to all of the members containing the short 
fibers due to the lack of the calibrated distribution for most experiments. 
The fiber content distribution can be determined by the experimental 
results, and the fracture toughness of the matrix can be obtained via the 
experiments [61]. With respect to the different mix proportions used in 
Zheng [20], the bridging law is determined through the interface pa-
rameters with a lower fictional coefficient provided via [62], as shown 
in Table 1. 

Second, UHPC specimens with straight and hooked steel fibers, uti-
lized by Wang [63] and Hung [26] respectively, are modeled. The 
straight steel fiber, characterized by high strength and low aspect ratio, 
tends to be pulled out; thus, the simplified bridging relationship can be 
implemented without the consideration of fiber rupture. On the other 
hand, for UHPC with hooked steel fibers, the bridging peak stress of 
hooked fibers is much lower than that of straight fibers due to fiber 
congestion and high failure brittleness in the inclined plane [64]. 
However, few studies have focused on the bridging law with respect to 

Table 1 
Material parameters for short fibers.  

Parameters Steel-1 Steel-2 PVA-1 PVA-2 

Fiber Young’s modulus Ef (GPa) 200 200 25.8 25.8 
Fiber length Lf (mm) 13 30 12 12 
Fiber radius rf (μm) 100 100 19.5 19.5 
Fiber tensile strength σfu (MPa) 2500 2500 900 900 
Frictional bond strength τf (MPa) 11 11 2.53 1.11 
Chemical bond strength Gf (N/m) – – 1.49 6 
Slip hardening coefficient β – – 0.52 0.05 
Snubbing coefficient f 0.5 0.5 0.2 0.2 
Strength reduction coefficient f ′ – – 0.3 0.3  
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inclined anchorage and low fiber dispersion. Therefore, according to the 
experimental results by Yoo et al. [64], the σpb of specimens with hooked 
fibers can be approximately determined by reducing the bridging 
strength of the straight fibers. In addition, it is assumed that the speci-
mens with different fiber volume contents have the same fiber disper-
sion, and the calibration method for υ proposed in this paper is used 
through the specimen with a 2.5% fiber volumetric ratio. Moreover, 
other physical properties of the steel fiber are determined according to 
previous research [65,66]. 

Third, PE-ECC specimens combining high mechanical strength and 
excellent strain-hardening behavior, are simulated according to the test 
results of Yu [67]. In the absence of the physical properties of PE fibers, 
the test data from the direct test method are used as the model param-
eters. Then all input factors can be determined with the assumption of 
uniformly dispersed fibers. 

The computed stress-strain relationships of the three kinds of SFRC 
specimens are presented in Fig. 8. Through a comparison to the curves 
recorded in the experiments, it is found that the results with the proper 
input factors demonstrate satisfactory agreement with the experimental 
results. For the PVA-ECC specimens, the numerical approach can pro-
vide the tensile performance of the ECC specimens with different fiber 
properties, and the corresponding input factors are used in the ECC-FRP 
grid simulations in Section 4.4. For the UHPC, the simulation results 
represent that the UHPC specimens can be altered from tension- 
softening to strain-hardening behavior with the increase of the fiber 
volume fraction. Nevertheless, since the same s1 and s2 are employed for 
the specimens with different fiber contents, the contribution of steel 
fibers to the first cracking strength cannot be presented through the 
simulations. Fig. 8(h) compares the crack evolution of the weakest link 
in one of the simulations to that of the experiments. It is shown that the 
crack width of UHPC can be controlled below 0.05 mm until a localized 
crack occurs. In addition, the validated physical properties of the UHPC 
specimen with hooked fibers are applied to the UHPC-rebar simulations 
in Section 4.3. 

4.2. Simulation and verification for RC 

A series of direct tensile RC samples conducted by Lee and Kim [60] 
are chosen to verify the feasibility of the tensile specimens without short 
fibers. Six specimens differ in terms of the matrix cover thickness (c/ d =

1,2, 3) and the compressive strength of the concrete matrix (high--
strength concrete, HSC or normal-strength concrete, NSC), which 
represent the different bond-slip relationships and the fracture tough-
ness of matrix, respectively. On the basis of the flaw size distribution in 
the previous section, cckm and cckf are determined to be 1.628 mm and 
0.63 mm by Eqs.(10) and (11), respectively. Then, (cckm, ftm) and 
(cckf , (1+η)ftk) are used to calibrate the s1 and s2. The empirical pa-
rameters for bond-slip relationships a, b, and smax are determined based 
on test results in the literatures [56]. More details are provided in Fig. 9 
and Tables 2 and 3. 

To prove the theoretical formula of τr derived from the bonding 
mechanism, RC models with the length of one minimum crack spacing 
are conducted first. As shown in Fig. 10, the slight distinction between 
the numerical and theoretical results is attributed to the linear simpli-
fication of the local bond-slip law. Based on the availability of the bond 
spring elements, Fig. 11 shows a comparison of the tensile load-average 
strain responses simulated by the numerical model and obtained from 
the tests. The average crack spacing at the multiple-cracking stage can 
be calculated by dividing the member length by the number of un-
cracked segments, as shown in Fig. 12. The good agreement between the 
results of the simulations and tests demonstrates that the developed 
approach can exhibit the composite actions. 

4.3. Simulation and verification for UHPC-rebar 

Three groups of composite specimens containing steel rebars and 
steel short fibers tested by Hung [26] are analyzed. The variables of the 
specimens include the size of the rebar (d = 16, 19, 22 mm) and the 
volumetric ratio of the steel fibers (Vf = 0,2%), while the difference in 
loading patterns (monotonic or cyclic) is not considered. The material 
properties obtained from the rebar tension tests are adopted as the 
constitutive laws of the truss elements. 

Through the initial load-strain curves shown in Fig. 13, it is found 
that the addition of steel fiber can increase the ultimate tensile load. The 
fluctuations caused by the crack formation in the response of the UHPC- 
rebar will not lead to sharp decreases in the tensile force due to the tiny 
pulled slip of short fibers. Fig. 14 shows the complete load-strain re-
sponses for the UHPC-rebar and RC specimens. Note that the force 
fluctuations in the RC numerical results are caused by the failure of the 
bond springs, and the external force can revert back to the previous peak 
level through the stress redistribution. Meanwhile, although the exper-
imental results show the considerable scatter due to material random-
ness, the envelope of the simulation results can basically cover the test 
curves. In regard to the composite actions, the extent of crack localiza-
tion and ductility enhancing effect shows a strong correlation to the 
short fiber scatter and volumetric ratios of the reinforcing fibers, which 
still needs further research to understand the interplay. 

4.4. Simulation and verification for ECC-FRP 

As per Zheng [20], uniaxial tensile samples with 2% PVA fibers and 
BFRP grids with different volumetric ratios (Vr = 0.17%,0.68%,1.16%) 
are used. It is assumed that two ends of the matrix and continuous fibers 
can be fixed tightly. In addition, the ultimate strain of the BFRP grids of 
the input model is determined by the strain gauge measurements of the 
specimens with Vr = 1.16%. The loading applied to the specimen ends, 
is divided by the cross-sectional area to obtain the equivalent stress, as 
shown in Fig. 15. In contrast to the UHPC-rebar results that the tensile 
responses may proceed into the softening branch after the steel rebar 
yields, the PVA fibers and FRP grids show good compatibility up to the 

Table 2 
Critical points for the simplified bridging laws.  

Sources Composites σpb (MPa) σ1 (MPa) σ2 (MPa) δck (mm) δpb (mm) δ1 (mm) δ2 (mm) δmax (mm) 

Wang ECC 5.86 4.98 2.93 0.0284 0.071 0.13 0.25 1.4 
Wang and Guo UHPC, Vf = 1.5 8.06 6.85 4.03 0.0175 0.044 0.51 1.80 6.5 

UHPC, Vf = 2 10.74 9.13 5.37 0.0171 0.043 0.51 1.80 6.5 
UHPC, Vf = 2.5 13.43 11.42 6.72 0.0168 0.042 0.51 1.80 6.5 

Yu et al. UHTCC 17.86 15.18 3.57 0.0520 0.130 0.16 0.26 1.3 
Lee and Kim NSC – 0.63 0.21 – 0 0.08 0.16 0.19 

HSC – 0.67 0.05 – 0 0.08 0.16 0.26 
Hung et al. UHPC 10.24 8.70 5.12 0.0608 0.152 1.17 3.12 15 

RC-rebar – 0.72 0.05 – 0 0.08 0.16 0.2 
UHPC-rebar 8.93 7.59 4.47 0.0608 0.152 1.17 3.12 15 

Zheng et al. ECC 3.82 3.25 1.91 0.0581 0.083 0.16 0.30 2 
ECC-FRP 3.82 3.25 1.91 0.0581 0.083 0.16 0.30 2  
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Table 3 
Input parameters of all specimens for model validation.  

Sources Composites Continuous fiber Short fiber Matrix Geometry and parameters for calibration Stochastic parameters 

Vr Er fr Ar Sr Fiber type Vf Fiber direction Em Km Loading condition lrf σmu m n nc s1 s2 v 

% GPa MPa mm2 mm % GPa MPa⋅m1/2 mm MPa × 10− 3 

Wang ECC 0 – – – – PVA-1 2 2-D 20 1.19 M 1.82 4.84 – 98 57 31.9 45.6 1.6 
Wang and Guo UHPC 0 – – – – Steel-1 1.5 3-D 48 2.58 M 5.7 – – 34 – 31.9 45.6 1.3 

UHPC 2 5.58 – – 35 – 
UHPC 2.5 5.47 12.2 – 36 28 

Yu et al. UHTCC 0 – – – – PE 2 2-D 20 2.83 M 1.6 – 20 50 – 31.9 45.6 0 
Lee and Kim NSC, cm/d = 1 1.22 200 430 59.7 283.5 – 0 – 28 1.25 C 120 – 20 12 – 270.8 186.8 0 

NSC, cm/d = 2 115 – 12 – 
NSC, cm/d = 3 109 – 13 – 
HSC, cm/d = 1 1.22 200 430 59.7 283.5 – 0 – 28 1.8 C 104 – 20 13 – 
HSC, cm/d = 2 92 – 15 – 
HSC, cm/d = 3 88 – 16 – 

Hung et al. UHPC 0 – – – – Steel-2 2 2-D 48 1.51 M 12.8 6.7 – 12 6.5 31.9 45.6 5.2 
RC-rebar16 0.89 200 430 201 50 – 0 – C + M 92 – 20 3 – 270.8 186.8 0 
RC-rebar19 1.26 445 284 60 85 – 4 – 
RC-rebar22 1.69 469 380 69 67 – 6 – 
UHPC-rebar16 0.89 430 201 50 Steel-2 2 3-D 10.3 – 5 28 – 31.9 45.6 5.2 
UHPC-rebar19 1.26 445 284 60 10 – 29 – 
UHPC-rebar22 1.69 469 380 69 9.6 – 30 – 

Zheng et al. ECC 0 – – – – PVA-2 2 2-D 20 0.72 C + M 4.68 2.8 – 31 23 31.9 45.6 2.6 
ECC-FRP1 0.17 24.4 416 3.45 8.9 3.7 – 5 40 – 
ECC-FRP3 0.68 10.35 12.8 3.2 – 5 46 – 
ECC-FRP5 1.16 17.25 18 2.9 – 5 51 – 

Notes: fr is the yield strength of steel or the ultimate strength of FRP. Fiber angle can be assumed as 2-D or 3-D uniform distribution according to the thickness of the specimen and the fiber length. C and M under loading 
conditions imply that the displacement load is applied to the continuous fiber element or the matrix element. m is the number of the bond springs between the crack spring elements.  
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Fig. 8. Tensile stress-strain relationships and crack width-strain curves for PVA-ECC, PE-ECC and UHPC: (a) and (b) the ultimate strength and ductility of PVA-ECC 
are affected by the physical properties of PVA fibers and stochastic nature; (c) simulations of PE-ECC can be conducted by using the bridging relationship from direct 
test method; (d)–(g) the volume content and type of steel fibers have a great influence on the tensile behavior of UHPC; (h) and (i) the incorporation of short fibers 
can constrain the crack width effectively. 

Fig. 9. Local bond-slip laws for the continuous fiber-matrix interface of RC, 
UHPC-steel and ECC-FRP specimens. 

Fig. 10. Stress distribution along the continuous fibers of RC specimens with 
the specific element length. 
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rupture of FRP at an ultimate strain over 1%. In other words, the 
ductility enhancing effect can be well captured by the proposed model. 

5. Discussion 

It is verified that the compatible and universal model can indicate the 
reinforcing mechanism of fibers at different scales. In terms of the strong 
variation in existing experiments, the stochastic process and Monte 
Carlo simulation based on the statistical analysis are conducted in the 
developed model. The range of simulations can mostly cover the un-
stable experimental results due to the accurate calibration of stochastic 
distributions. For chopped short fibers at the mesoscopic scale, the 
physical properties and fiber-matrix interface behavior can be taken into 
account by adopting the fiber-bridging constitutive law. For continuous 
fibers at the macroscopic scale, nonlinear behavior such as rupturing 

and yielding can be easily considered by defining the constitutive rela-
tionship of the truss elements. Furthermore, when Vr = 0 or Vf = 0, the 
applicability of the proposed model in the SFRC and CFRC is owing to 
the subtle correspondence between the bridging stress-COD relation-
ship, local bond-slip law and minimum crack spacing. 

Two kinds of springs are used to present different interfacial prop-
erties in terms of the composite actions. First, the tension stiffening ef-
fect and fiber-bridging model can be characterized by the shear and 
tensile spring elements, respectively. In addition, the effect of chopped 
fibers and CNMs on the continuous fiber-matrix interface can be 
expressed by the bond-slip relationship between CFRC and MSFRC. 
Finally, the synergetic effect on cracking behavior can be incorporated 
into the model by the minimum crack spacing derived in this paper. 

Overall, the high-precision simulation depends on the adopted 
bridging law and minimum crack spacing; thus, investigating the in-
fluence of nonlinear properties on the cracking behavior is the next step 
of the study. Meanwhile, the early age autogenous shrinkage [68] and 
prestress force [69] have a discernible effect on the tensile behavior of 
MSFRC, for which the developed model can establish a theoretical basis. 
In addition, because the thin plate is one of the widely applied compo-
nents in the practical application for MSFRC [18], it is worth considering 
transforming the 1-D model into 2-D model in terms of the flexural 
behavior. 

6. Conclusions 

In this paper, the concept of Multi-Scale Fiber Reinforced Cementi-
tious Composite, abbreviated to MSFRC, is presented. The material is 
characterized by the tight crack-width control capability, high tensile 
strength and ductility. The composite actions of MSFRC are analyzed 
from a universal perspective via a review of previous studies on CFRC 
and SFRC. Then, the 1-D numerical model based on the crack band 
theory, fiber-bridging model and stochastic process, is proposed to 
simulate behaviors of MSFRC. Regarding the discussion throughout this 
paper, the following conclusions can be summarized. 

Fig. 11. Initial load-strain curves of the experiments and predictive models for RC with different cover thickness and the compressive strength.  

Fig. 12. Average crack spacing of experiments and predictive models for RC.  
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(1) A model is proposed and developed. In the model, fiber-bridging 
model and local bond-slip laws are defined and inserted into the 
interfaces by means of the spring elements. Then, the minimum 
crack spacing of MSFRC in the model is derived based on the 
bond-slip behavior and micromechanical-based approach. A 
fitting method in combination with the probabilistic concept is 
proposed by using the obtained experimental results to determine 
the distribution functions of the matrix flaw and fiber dispersion 
in the absence of statistical data. 

(2) The model is proved to be of wide suitability for different mate-
rials. It is used in simulations of six independent experiments in 
terms of the tensile response and crack propagation: PVA-ECC, 
PE-ECC, UHPC, RC, UHPC-steel rebar and ECC-FRP grid. All 
simulation results of SFRC, CFRC and MSFRC experiments show 
good agreement with the experimental results. It is shown that 
the developed model can take account of the scales, physical 

properties and volume fractions of reinforcing fibers, interface 
behavior and stochastic nature.  

(3) This model can be used to illuminate the mechanical mechanism 
and also for material design. In the SFRC cases, the tensile strain- 
hardening behavior and multiple cracking phenomenon of 
different SFRC can be simulated, which can be applied to the 
corresponding MSFRC experiments. In the CFRC case, the validity 
of the proposed local bond-slip relationship and minimum crack 
spacing have been demonstrated. In the two cases of MSFRC, the 
composite actions between cementitious matrix and reinforcing 
fibers at different scales can be well captured based on the cali-
brations and validations of SFRC and CFRC. For the synergetic 
effect, the minimum crack spacing and crack width could be 
controlled effectively. And, the tension stiffening and ductility 
enhancing effect are demonstrated to be associated with the fiber 

Fig. 13. Initial load-strain curves of the experiments and predictive models for UHPC-rebar with different rebar size: continuous fiber and short fibers can participate 
in load bearing due to the synergetic effect before steel rebar yields. 

Fig. 14. Complete load-strain curves of experiments and predictive models for UHPC-rebar with different rebar size and short fiber volumetric ratio: peak strength 
and ultimate strain of UHPC-steel rebar are determined by the physical properties of fibers, and specimens with 2% short fiber volumetric ratio exhibit a lower 
rupture strain of the rebar than that in the specimens without the incorporation of short fibers. 
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volume contents and stochastic nature. The above findings and 
proposed model can facilitate the design of MSFRC. 
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Appendix A. Calculation of the minimum crack spacing of the strain-hardening SFRC based on the simplified bridging stress-COD 
relationship 

The simplified bridging stress-COD relationship has been presented [6] in terms of the ultimate bridging strength σpb = Vf Lf τf g/(4rf ), the ultimate 
COD δpb = L2

f τf/(2ηEf rf ), the composite modulus coefficient η = (VmEm + Vf Ef )/(VmEm), the frictional bond strength τf , the radius and length of the 
short fibers rf and Lf , the elastic modulus of the matrix and short fibers Em and Ef , and the short fiber volume fraction Vf . In addition, the snubbing 
factor g can be given as follows: 

g = 2
∫ π

2

θ=0

∫ cos θLf
2

z=0
ef θp(θ)p(z)dzdθ (A.1)  

where p(θ) and p(z) are the probability density functions of the random fiber orientation and location, p(z) = 2/Lf , p(θ) = 2/π for 2D and p(θ) = sin θ 
for 3D. Then g can be obtained by: 

g =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

4
π

e
f π
2 − f

f 2 + 1
for 2D

2
e

f π
2 + 1

f 2 + 4
for 3D

(A.2) 

When the matrix reaches the cracking strength, the crack spacing of strain-hardening SFRC can be derived by the equilibrium condition: 

Ff + Fpulley = σmuVm (A.3)  

where Ff is the normal resultant force of the interface friction along the distributed short fiber and Fpulley is the resultant pulley force at the end point of 
the inclined short fibers. Similarly, the equilibrium condition for a single fiber can be obtained by: 

P0 cos θ + Ppulley = P0ef θ (A.4)  

Fig. 15. Stress-strain relationships of the experiments and predictive models for ECC-FRP: FRP grid can exhibit excellent workability with PVA fibers, and the high 
reinforcement ratio of continuous fiber would lead to a strong synergetic effect. 
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where P0 and Ppulley are the interface friction and pulley force of a single inclined fiber, respectively. P0 can be obtained using the crack spacing of SFRC 
lf by: 

P0 = 2πrf τf lf (A.5) 

In addition, the relationship between the resultant force and the force of a single fiber can be established by integrating the contribution of fibers 
crossing the cross section: 

Ff =
Vf

πr2
f

Lf − lf

Lf

∫ π
2

θ=0

∫ cos θLf
2

z=0
P0 cos θp(θ)p(z)dzdθ (A.6)  

Fpulley =
Vf

πr2
f

∫ π
2

θ=0

∫ cos θLf
2

z=0
Ppulleyp(θ)p(z)dzdθ (A.7) 

When the matrix cracks, the released stress will be carried by the bridging force [43]. The equilibrium condition can be given by: 

σmuVm =
Vf

πr2
f

∫ π
2

θ=0

∫ cos θLf
2

z=0
P0ef θp(θ)p(z)dzdθ (A.8) 

Substituting Eq. (A.5) into (A.6), Eqs. (A.4) and (A.8) into (A.7), respectively, Fpulley and Ff can be expressed as follows: 

Ff =
Vf τf lf

(
Lf − lf

)
λθ

rf Lf
(A.9)  

Fpulley = σmuVm

(

1 −
λθ

g

)

(A.10)  

where λθ = 1 for a 2-D uniform distribution and λθ = 2/3 for a 3-D uniform distribution. Combining Eqs. (A.3), (A.9) and (A.10), lf can be expressed in 
Ref. [43] as: 

lf =
Lf −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

L2
f − 4Lf l

′

f

√

2
(A.11)  

where l′f = σmuVmrf/(gVf τf ) is defined as the transmission length of short fibers. 

Appendix B. Calculation of the average bond stress along the minimum crack spacing by the local bond-slip relationship 

For CFRC, the mechanical model of the continuous fiber reinforced brittle matrix subjected to a pull-out force P is shown in Fig. B.1. P is parallel to 
the fiber axis and can be expressed by the normal stress σrl of the continuous fiber at the loaded end as follows: 

P = πr2
r σrl (B.1)  

Fig. B.1. The pull-out model of the continuous fiber from matrix.  

The embedment length of the continuous fiber is l. Both the fiber and matrix are assumed to behave in isotropic and elastic states with moduli of Er 
and Em, respectively. For a segment of the continuous fiber with a length of dx, the relationship between the tensile normal stress σr and the interfacial 
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shear stress τr can be derived according to the equilibrium condition of forces: 

τr =
rr

2
dσr

dx
(B.2)  

where ur and um are the axial displacements of the fiber and matrix at the same location. Then differentiating the shear sliding s between them with 
respect to x shows the following: 

ds
dx

=
dur

dx
−

dum

dx
=

σr

Er
−

σm

Em
(B.3) 

The equilibrium equation including the axial tensile force and normal stress, can be established as: 

P = π
(
r2

m − r2
r

)
σm + πr2

r σr (B.4)  

where rm =
̅̅̅̅̅̅̅̅̅
A/π

√
. Then, the normal stress σm of the matrix can be derived by: 

σm =
(σrl − σr)r2

r(
r2

m − r2
r

) (B.5) 

However, the 0.4 power of the rising branch in Eq. (19a) increases the difficulty of solving the governing differential equation. Thus, based on the 
interfacial energy balance approach, the nonlinear local bond-slip law is simplified to a linear envelope by modifying the transferable load τue: 

τ =

{
kαs (s ≤ su)

kβ(smax − s) (su < s ≤ smax)

(B.6a)
(B.6b)

Herein, kα = τue
su

; kβ = τue/(smax − su); and τue = (0.429su /smax + 1)τu. 
When the interface behaves in the elastic state, by combining Eqs.(B.2), (B.3), (B.4) and (B.6a), the governing differential equation is obtained as: 

d2σr

dx2 − α2
1σr + α2σrl = 0 (B.7)  

where 

α2
1 =

2kα

rr

(
1
Er

+
r2

r

Em
(
r2

m − r2
r

)

)

(B.8)  

=
2kαrr

Em
(
r2

m − r2
r

) (B.9) 

The analytical solution of Eqn. (B.7) can be derived as: 

σr(x) = C1 cosh(α1x) + C2 sinh(α1x) +
α2

α2
1
σrl (B.10)  

τr(x) =
rrα1

2
(C1 sinh(α1x) + C2 cosh(α1x)) (B.11) 

By applying the boundary conditions σr(l) = σrl and τr(0) = 0, C1 and C2 can be determined as: 

C1 =

(

1 −
α2

α2
1

)
σrl

cosh(α1l)
C2 = 0 (B.12)  

Then, the analytical solution for the elastic stage of the bond-slip relationship becomes: 

σr(x) = σrl

[(

1 −
α2

α2
1

)
cosh(α1x)
cosh(α1l)

+
α2

α2
1

]

(B.13)  

τr(x) =
rr

2
α1σrl

(

1 −
α2

α2
1

)
sinh(α1x)
cosh(α1l) (B.14) 

Once the slip of the interface exceeds su, the region along the length l can be divided into the elastic region (0 ≤ x < lu) and softening region (lu ≤

x < l), where lu is the damage propagation length. 
For the elastic region (0 ≤ x < lu), the analytical solution can be derived by replacing l and σrl with lu and the normal stress σrlu at x = lu, 

respectively. Furthermore, by applying the new boundary condition, i.e., τ(0) = 0, τ(lu) = τue and σr(lu) = σrlu to the solution, we have: 

σr(lu) = σrlu =
2τue

rrα1

(

1 −
α2

α2
1

)

tanh(α1lu)
(B.15) 
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σr(0) = σr0 = σrlu

[(

1 −
α2

α2
1

)
1

cosh(α1lu)
+

α2

α2
1

]

(B.16) 

For the softening region (lu ≤ x < l), the governing differential equation Eqn. (B.7) is rewritten by replacing the dominated relationship as follows: 

d2σr

dx2 + β2
1σr − β2σrl = 0 (B.17)  

where 

β2
1 =

2kβ

rr

(
1
Er

+
r2

r

Em
(
r2

m − r2
r

)

)

(B.18)  

β2 =
2kβrr

Em
(
r2

m − r2
r

) (B.19) 

The analytical solution of Eq.(B.17) can be derived as: 

σr(x) = C3 cos(β1x) + C4 sin(β1x) +
β2

β2
1
σrl (B.20)  

Herein, C3 and C4 can be determined by adopting the boundary conditions, i.e., σr(lu) = σrlu and τr(lu) = τue: 

C3 = σrlu cos(β1lu) −
β2

β2
1
σrl cos(β1lu) −

2τue sin(β1lu)

β1rr

C4 = σrlu sin(β1lu) −
β2

β2
1
σrl sin(β1lu) +

2τue cos(β1lu)

β1rr

(B.21) 

The normal stress σr(l) of the continuous fiber at x = l, written as σrl, is obtained as: 

σrl =

⎧
⎪⎪⎨

⎪⎪⎩

σrlu[cos(β1lu)cos(β1l) + sin(β1lu)sin(β1l)]+
2τue

β1rr
[sin(β1l)cos(β1lu) − sin(β1lu)cos(β1l)]

⎫
⎪⎪⎬

⎪⎪⎭

[

1 −
β2

β2
1
+

β2

β2
1

cos(β1lu)cos(β1l) +
β2

β2
1

sin(β1lu)sin(β1l)

]
(B.22) 

σr0 and σrl can be expressed as the functions, σr0(lu) and σrl(lu), because lu is the variable during loading. The force transferred from the continuous 
fiber to the matrix can be written as: 

Pbs(lu) = πr2
r [σrl(lu) − σr0(lu)] (B.23) 

By solving dPbs(lu)/dlu = 0, the critical damage propagation length luc is derived, and the critical average bond strength can be written as: 

τr =
[σrl(luc) − σr0(luc)]rr

2l
(B.24)  
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field fracture modelling of CNT composites. Compos B Eng 2022:236. 

[10] Ahmed HU, Faraj RH, Hilal N, Mohammed AA, Sherwani AFH. Use of recycled 
fibers in concrete composites: a systematic comprehensive review. Compos B Eng 
2021:215. 

[11] Xu L-Y, Nie X, Zhou M, Tao M-X. Whole-process crack width prediction of 
reinforced concrete structures considering bonding deterioration. Eng Struct 2017; 
142:240–54. 

[12] Triantafyllou GG, Rousakis TC, Karabinis AI. Analytical assessment of the bearing 
capacity of RC beams with corroded steel bars beyond concrete cover cracking. 
Compos B Eng 2017;119:132–40. 

[13] Du J, Meng W, Khayat KH, Bao Y, Guo P, Lyu Z, et al. New development of ultra- 
high-performance concrete (UHPC). Compos B Eng 2021:224. 

[14] Gong J, Ma Y, Fu J, Hu J, Ouyang X, Zhang Z, Wang H. Utilization of fibers in ultra- 
high performance concrete: a review. Compos B Eng 2022:241. 

[15] Wang S, Yu L, Yang F, Xu L, Wu K, De Schutter G, Yang Z. Effect of steel fiber 
distribution on the mechanical properties of UHPC caused by vehicle-bridge 
coupling vibration. Compos B Eng 2022:245. 

[16] Zhang H, Wu Z, Hu X, Ouyang X, Zhang Z, Banthia N, Shi C. Design, production, 
and properties of high-strength high-ductility cementitious composite (HSHDCC): a 
review. Compos B Eng 2022:247. 

[17] Zheng Y-Z, Wang W-W, Brigham JC. Flexural behaviour of reinforced concrete 
beams strengthened with a composite reinforcement layer: BFRP grid and ECC. 
Construct Build Mater 2016;115:424–37. 

[18] Ye Y-Y, Smith ST, Zeng J-J, Zhuge Y, Quach W-M. Novel ultra-high-performance 
concrete composite plates reinforced with FRP grid: development and mechanical 
behaviour. Compos Struct 2021:269. 

P. Zhou and P. Feng                                                                                                                                                                                                                            

http://refhub.elsevier.com/S1359-8368(23)00089-6/sref1
http://refhub.elsevier.com/S1359-8368(23)00089-6/sref1
http://refhub.elsevier.com/S1359-8368(23)00089-6/sref2
http://refhub.elsevier.com/S1359-8368(23)00089-6/sref2
http://refhub.elsevier.com/S1359-8368(23)00089-6/sref3
http://refhub.elsevier.com/S1359-8368(23)00089-6/sref3
http://refhub.elsevier.com/S1359-8368(23)00089-6/sref4
http://refhub.elsevier.com/S1359-8368(23)00089-6/sref4
http://refhub.elsevier.com/S1359-8368(23)00089-6/sref4
http://refhub.elsevier.com/S1359-8368(23)00089-6/sref5
http://refhub.elsevier.com/S1359-8368(23)00089-6/sref5
http://refhub.elsevier.com/S1359-8368(23)00089-6/sref5
http://refhub.elsevier.com/S1359-8368(23)00089-6/sref6
http://refhub.elsevier.com/S1359-8368(23)00089-6/sref6
http://refhub.elsevier.com/S1359-8368(23)00089-6/sref7
http://refhub.elsevier.com/S1359-8368(23)00089-6/sref7
http://refhub.elsevier.com/S1359-8368(23)00089-6/sref7
http://refhub.elsevier.com/S1359-8368(23)00089-6/sref8
http://refhub.elsevier.com/S1359-8368(23)00089-6/sref8
http://refhub.elsevier.com/S1359-8368(23)00089-6/sref8
http://refhub.elsevier.com/S1359-8368(23)00089-6/sref9
http://refhub.elsevier.com/S1359-8368(23)00089-6/sref9
http://refhub.elsevier.com/S1359-8368(23)00089-6/sref10
http://refhub.elsevier.com/S1359-8368(23)00089-6/sref10
http://refhub.elsevier.com/S1359-8368(23)00089-6/sref10
http://refhub.elsevier.com/S1359-8368(23)00089-6/sref11
http://refhub.elsevier.com/S1359-8368(23)00089-6/sref11
http://refhub.elsevier.com/S1359-8368(23)00089-6/sref11
http://refhub.elsevier.com/S1359-8368(23)00089-6/sref12
http://refhub.elsevier.com/S1359-8368(23)00089-6/sref12
http://refhub.elsevier.com/S1359-8368(23)00089-6/sref12
http://refhub.elsevier.com/S1359-8368(23)00089-6/sref13
http://refhub.elsevier.com/S1359-8368(23)00089-6/sref13
http://refhub.elsevier.com/S1359-8368(23)00089-6/sref14
http://refhub.elsevier.com/S1359-8368(23)00089-6/sref14
http://refhub.elsevier.com/S1359-8368(23)00089-6/sref15
http://refhub.elsevier.com/S1359-8368(23)00089-6/sref15
http://refhub.elsevier.com/S1359-8368(23)00089-6/sref15
http://refhub.elsevier.com/S1359-8368(23)00089-6/sref16
http://refhub.elsevier.com/S1359-8368(23)00089-6/sref16
http://refhub.elsevier.com/S1359-8368(23)00089-6/sref16
http://refhub.elsevier.com/S1359-8368(23)00089-6/sref17
http://refhub.elsevier.com/S1359-8368(23)00089-6/sref17
http://refhub.elsevier.com/S1359-8368(23)00089-6/sref17
http://refhub.elsevier.com/S1359-8368(23)00089-6/sref18
http://refhub.elsevier.com/S1359-8368(23)00089-6/sref18
http://refhub.elsevier.com/S1359-8368(23)00089-6/sref18


Composites Part B 254 (2023) 110586

19

[19] Meng W, Khayat KH, Bao Y. Flexural behaviors of fiber-reinforced polymer fabric 
reinforced ultra-high-performance concrete panels. Cement Concr Compos 2018; 
93:43–53. 

[20] Zheng Y-Z, Wang W-W, Mosalam KM, Zhu Z-F. Mechanical behavior of ultra-high 
toughness cementitious composite strengthened with Fiber Reinforced Polymer 
grid. Compos Struct 2018;184:1–10. 

[21] Li B, Xiong H, Jiang J, Dou X. Tensile behavior of basalt textile grid reinforced 
Engineering Cementitious Composite. Compos B Eng 2019;156:185–200. 

[22] Gong T, Ahmed AH, Curosu I, Mechtcherine V. Tensile behavior of hybrid fiber 
reinforced composites made of strain-hardening cement-based composites (SHCC) 
and carbon textile. Construct Build Mater 2020:262. 

[23] Fischer G, Li VC. Influence of matrix ductility on tension-stiffening behavior of 
steel reinforced engineered cementitious composites (ECC). Struct J 2002;99: 
104–11. 

[24] Kang S-B, Tan KH, Zhou X-H, Yang B. Influence of reinforcement ratio on tension 
stiffening of reinforced engineered cementitious composites. Eng Struct 2017;141: 
251–62. 

[25]] Mündecke E, Mechtcherine V. Tensile behaviour of strain-hardening cement- 
based composites (SHCC) with steel reinforcing bars. Cement Concr Compos 
2020;105. 

[26] Hung C-C, Lee H-S, Chan SN. Tension-stiffening effect in steel-reinforced UHPC 
composites: constitutive model and effects of steel fibers, loading patterns, and 
rebar sizes. Compos B Eng 2019;158:269–78. 

[27] Lee S-C, Cho J-Y, Vecchio FJ. Tension-stiffening model for steel fiber-reinforced 
concrete containing conventional reinforcement. ACI Struct J 2013;110. 

[28] Deluce JR, Lee S-C, Vecchio FJ. Crack model for steel fiber-reinforced concrete 
members containing conventional reinforcement. ACI Struct J 2014;111:93. 

[29] Chen C, Cai H, Li J, Zhong P, Huang B, Sui L, Zhou Y. One-dimensional extended 
FEM based approach for predicting the tensile behavior of SHCC-FRP composites. 
Engineering Fracture Mechanics; 2019. 

[30] Aveston J, Kelly A. Theory of multiple fracture of fibrous composites. J Mater Sci 
1973;8:352–62. 

[31] Curtin WA, Ahn BK, Takeda N. Modeling brittle and tough stress–strain behavior in 
unidirectional ceramic matrix composites. Acta Mater 1998;46:3409–20. 

[32] Hegger J, Will N, Bruckermann O, Voss S. Load–bearing behaviour and simulation 
of textile reinforced concrete. Mater Struct 2006;39:765–76. 

[33] Misseri G, Rovero L, Galassi S. Analytical modelling bond behaviour of 
polybenzoxazole (PBO) and glass Fibre Reinforced Cementitious Matrix (FRCM) 
systems coupled with cement and gypsum matrixes: effect of the Cohesive Material 
Law (CML) shape. Compos B Eng 2021:223. 

[34] Mu-xuan T, Ji-zhi Z. Predicting the crack width of reinforced concrete structural 
members using the smeared crack model and layered shell elements in general- 
purpose finite element packages. Eng Mech 2020;37:165–77. 

[35] Pulatsu B, Erdogmus E, Lourenço PB, Lemos JV, Tuncay K. Numerical modeling of 
the tension stiffening in reinforced concrete members via discontinuum models. 
Comput Part Mech 2020;8:423–36. 

[36] Asim N, Badiei M, Samsudin NA, Mohammad M, Razali H, Soltani S, Amin N. 
Application of graphene-based materials in developing sustainable infrastructure: 
an overview. Compos B Eng 2022:245. 

[37] Wang W, Chen SJ, Sagoe-Crentsil K, Duan W. Graphene oxide-reinforced thin shells 
for high-performance, lightweight cement composites. Compos B Eng 2022:235. 

[38] Meng T, Ying K, Yu H, Hong Y. An approach to effectively improve the interfacial 
bonding of paste–limestone by incorporating different nanomaterials. Compos B 
Eng 2022:242. 

[39] Slobbe AT, Hendriks MAN, Rots JG. Systematic assessment of directional mesh bias 
with periodic boundary conditions: applied to the crack band model. Eng Fract 
Mech 2013;109:186–208. 

[40] Wang S. Micromechanics based matrix design for engineered cementitious 
composites. University of Michigan; 2005. 

[41] Li Y, Ruan X, Akiyama M, Zhang M, Xin J, Lim S. Modelling method of fibre 
distribution in steel fibre reinforced concrete based on X-ray image recognition. 
Compos B Eng 2021:223. 

[42] Junxia L, Weng J, Yang E-H. Stochastic model of tensile behavior of strain- 
hardening cementitious composites (SHCCs). Cement Concr Res 2019:124. 

[43] Lu C, Leung CKY. A new model for the cracking process and tensile ductility of 
Strain Hardening Cementitious Composites (SHCC). Cement Concr Res 2016;79: 
353–65. 

[44] Huang T, Zhang YX. Numerical modelling of mechanical behaviour of engineered 
cementitious composites under axial tension. Comput Struct 2016;173:95–108. 

[45] Kanda T, Lin Z, Li VC. Tensile stress-strain modeling of pseudostrain hardening 
cementitious composites. J Mater Civ Eng 2000;12:147–56. 

[46] Fischer G, Li VC. Effect of fiber reinforcement on the response of structural 
members. Eng Fract Mech 2007;74:258–72. 

[47] Wang X, Ding S, Qiu L, Ashour A, Wang Y, Han B, Ou J. Improving bond of fiber- 
reinforced polymer bars with concrete through incorporating nanomaterials. 
Compos B Eng 2022:239. 

[48] Lu S, Xia W, Bai E, Ling L, Du Y. Interfacial modification: the dynamic compression 
properties and enhancement mechanism of concrete added with micro-nano 
hierarchical carbon-based fiber. Compos B Eng 2022:247. 

[49] Dancygier AN, Berkover E. Cracking localization and reduced ductility in fiber- 
reinforced concrete beams with low reinforcement ratios. Eng Struct 2016;111: 
411–24. 

[50] Zhang J, Ju X. Investigation on stress-crack opening relationship of engineered 
cementitious composites using inverse approach. Cement Concr Res 2011;41: 
903–12. 

[51] Xie C, Cao M, Guan J, Liu Z, Khan M. Improvement of boundary effect model in 
multi-scale hybrid fibers reinforced cementitious composite and prediction of its 
structural failure behavior. Compos B Eng 2021:224. 

[52] GB. Code for design of concrete structures. Beijing: China Building Industry Press; 
2010, 50010 [in Chinese]. 

[53] Esmaeily A, Xiao Y. Behavior of reinforced concrete columns under variable axial 
loads: analysis. ACI Struct J 2005;102:736. 

[54] Haskett M, Oehlers DJ, Mohamed Ali MS. Local and global bond characteristics of 
steel reinforcing bars. Eng Struct 2008;30:376–83. 

[55] Lin H, Zhao Y, Ozbolt J, Feng P, Jiang C, Eligehausen R. Analytical model for the 
bond stress-slip relationship of deformed bars in normal strength concrete. 
Construct Build Mater 2019;198:570–86. 

[56] Mirza SM, Houde J. Study of bond stress-slip relationships in reinforced concrete. 
J Proc 1979:19–46. 

[57] Gan Y. Bond stress and slip modeling in nonlinear finite element analysis of 
reinforced concrete structures. University of Toronto; 2000. 
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