
Engineering Structures 305 (2024) 117771

Available online 5 March 2024
0141-0296/© 2024 Elsevier Ltd. All rights reserved.

Rapid design for large-scale parallel CFRP cable with multi-source 
experimental data 

Li Dong a, Peng Feng a,*, Chi Lu b, Pan Zhang c, Guozhen Ding d 

a Department of Civil Engineering, Tsinghua University, Beijing, China 
b Department of Civil Engineering, Kyushu University, Fukuoka, Japan 
c China Aviation Planning and Design Institute (Group) CO., LTD., Beijing, China 
d Department of Civil and Environmental Engineering, Imperial College London, London, United Kingdom   

A R T I C L E  I N F O   

Keywords: 
Parallel CFRP cable 
Tensile strength 
Size effect 
Monte Carlo 
Neural network 
Genetic algorithm 

A B S T R A C T   

With advancements in material properties and reduced costs, carbon fibre reinforced polymer (CFRP) cables are 
gaining popularity in engineering applications due to their superior strength-to-mass ratio and durability. 
However, the tensile strength of large-scale parallel CFRP cables remains a critical issue, warranting further 
research and engineering expertise. To address this issue, this paper proposes a method to rapidly predict and 
adaptively correct the tensile strength of large-scale parallel CFRP cables using multi-source experimental data 
and an integrated approach that incorporates Monte Carlo simulations, Neural Network algorithms, and Genetic 
algorithms. This comprehensive method takes into account the influence of various factors including small-scale 
material strength and its coefficient of variation, cable length, the number of parallel wires, installation errors, 
and anchorage errors. Validated by reported experimental data, the method demonstrates its effectiveness in 
accurately predicting the tensile strength of parallel CFRP cables. Moreover, a design method for large-scale 
parallel CFRP cables is proposed based on the reliability theory. Lastly, the efficiency and effectiveness of the 
proposed method are validated through the design and optimization of a cable-stayed bridge featuring a main 
span of 1984 m, utilising both parallel steel and CFRP cables.   

1. Introduction 

FRP cables have numerous advantages including low density, high 
strength, corrosion resistance, and fatigue resistance. These exceptional 
attributes make CFRP a viable alternative to steel cables for cable 
manufacturing in cable-supported structures [1]. The potential of CFRP 
cables in large-span bridge construction was highlighted as early as 
1986 by Meier [2], proposing the construction of a CFRP cable sus-
pension bridge spanning 8400 m across the strait of Gibraltar. Later, 
parallel CFRP cables have become more common on pedestrian bridges 
[3-5]. These applications have led to investigations into related research 
such as anchoring systems [6-9], service life and economy [10,11], 
safety factors in cable design, and reliability design methods for struc-
tures [11,12], indicating that the strength and safety of CFRP cables 
have emerged as primary factors limiting engineering applications. In 
recent years, large-span structures have frequently necessitated the use 
of parallel CFRP tension cables, with growing demands in terms of 
length and cable force [6,10]. While there are methods available for 

predicting the strength of small-scale cables, the ability to predict the 
strength of large CFRP cables remains significantly limited [13]. 

In structural engineering, various types of CFRP cables are 
commonly used, including parallel bar cables, parallel plate cables, 
stranded cables, and self-anchored cables [14]. The investigation of 
fundamental material properties of CFRP is crucial, as the prediction of 
overall structural performance relies on a comprehensive understanding 
of the material’s strength properties. Normal distribution [15,16] and 
Weibull distribution [17,18] are commonly used to describe the distri-
bution of CFRP strength, and these studies have shown that both dis-
tributions can pass regression inspection. Moreover, similar materials 
and structural forms such as CFRP plates or GFRP bars have been 
extensively studied, providing comparable results in strength probabil-
ity distribution modelling [19-21]. As the number of parallel wires in-
creases, the Weibull distribution gradually converges to a normal 
distribution [22]. The weakest-link model [23] is most frequently 
applied to estimate the strength of longitudinal members, and the 
Weibull distribution is the most straightforward and practical 
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mathematical model [24], although the normal distribution is also 
considered appropriate in some cases [25]. Various studies have high-
lighted differences in assumptions regarding different distribution pat-
terns and analysed parameters [15,17,24]. 

Given that CFRP material is an elastic-brittle material, its strength is 
greatly influenced by the size effect [26,27]. In large-scale structures, 
the failure of a single element does not necessarily result in the overall 
failure of the structure [28]. When predicting the strength of large-scale 
parallel CFRP cables, the length and parallel coupling effects can be 
treated separately, as they are independent and do not interact with each 
other [29]. Some scholars [30,31] have taken a microscopic approach by 
simulating the damage of fibres and resins during the tensile process to 
establish strength prediction models from microscopic to macroscopic 
scales. However, these models are computationally expensive for 
large-scale CFRP cables. Additionally, due to technical limitations, it is 
challenging to experimentally determine a reliable strength distribution 
for small-scale materials [32]. Furthermore, these theories have limited 
applicability for large-scale elements, leading some researchers [33,34] 
to develop more complex predictive models. Zweben and Rosen [35] 
found that theoretical predictions correlated well with data from 
small-scale samples, they questioned the reliability of predictions for 
large-scale samples. Other research [33,36] has shown that certain 
models are only valid under specific size constraints. For a parallel cable 
composed of multiple wires, this study aims to determine a suitable 
distribution law for the strength of unit-length wire based on experi-
mental data and to further predict the strength of large-scale cables. 

To predict the strength of parallel CFRP cables, accurate unit-length 
wire strength is required as a basis for estimation. This can only be 
obtained through experimental or empirical means. To fully utilise test 
data with different specimen sizes and mitigate the influence of test 
conditions and size effects, a method of utilising multi-source experi-
mental data is developed in this paper. The genetic algorithm [37] is 
well-suited for such problems, as it can search different regions of the 
solution space simultaneously and find discrete sets of solutions for 
nonconvex, discontinuous, and multimodal solution spaces [38]. The 
fitness function, a critical part of the genetic algorithm, should be chosen 
carefully. Maximum likelihood estimation (MLE) is commonly used for 
parameter estimation in civil engineering but weighted likelihood esti-
mation (WLE) offers higher accuracy under complex conditions [39]. 
The Kolmogorov-Smirnov (K-S) test, which assesses the normal distri-
bution using mean and variance values of the samples, is frequently used 
and has been modified by scholars [40]. Weber et al. [41] used mini-
mized Kolmogorov-Smirnov estimation (MKSE) to estimate the best-fit 
distribution for given data. A fitness function with fast speed and good 
stability can be proposed for this study by combining these methods. 

When designing steel tension cables, engineers generally rely on 
methods such as the allowable stress or limit state design method 
without considering the size effect [42]. However, the evident size effect 
of CFRP cables makes it challenging to control their strength using 
simple methods like the safety factor method, resulting in difficulties in 
structural design. For composite materials, many scholars [43-45] have 
conducted reliability analyses of structures or components using 
experimental data and Monte Carlo simulation. However, the Monte 
Carlo method is computationally inefficient and unsuitable for 
large-scale structural design and optimization. Machine learning (ML) 
has been extensively used in civil engineering for damage assessment 
and strength prediction, including material joints [46,47], failure modes 
of members [48,49], and structural performance [50]. 

ML algorithms can be categorized into supervised learning, unsu-
pervised learning, and reinforcement learning, based on the dataset and 
learning approach [51]. In general, simple ML models with satisfactory 
accuracy are preferred over complex ones because they tend to gener-
alize better to new data, require less raw data, and are more interpret-
able [52,53]. Commonly used methods for structural optimization 
include Kriging, Support Vector Regression (SVR), Polynomial Chaos 
Expansion (PCE) and neural network. Kriging is powerful in making 

predictions with small datasets and allows embedding domain knowl-
edge in the prior [54]. However, it may yield poor predictions due to a 
bad choice of kernel and problems with hyperparameter optimization, 
and they do not scale well with big data. In SVR, the target is to establish 
a prediction equation with less than the allowed error based on the 
predicted output [55]. It has better robustness, but the selection of 
kernels and other hyperparameters can be complex [56]. The PCE 
method also requires preset setup parameters [57], which may not be 
effective for the high dimensionality and accuracy. For this study, the 
most widely used neural network is chosen as the acceleration algo-
rithm, as it can meet the requirements of adjustability, accuracy, and 
computational speed simultaneously. 

This study presents a prediction approach for enhancing the accuracy 
and speed of parallel CFRP cable strength using Monte Carlo estimation, 
Neural networks, and Genetic algorithm. The rest of the paper is orga-
nized as follows, and a detailed technical route is shown in Fig. 1. In 
Section 2, the factors influencing the strength of large-scale parallel 
CFRP cables composed of multiple wires are analysed. The theoretical 
calculation methods are proposed, and the estimation is implemented 
using the Monte Carlo method. To enhance the prediction accuracy, 
Section 3 utilises genetic algorithm and multi-source experimental data 
to estimate the strength of the most basic parameter, unit-length wire 
strength, during the prediction process. To improve computational 
speed, Section 4 reconstructs the prediction model using neural net-
works. Section 5 concludes this study and discusses the limitations of the 
proposed method. 

2. Influencing factors of cable strength and Monte Carlo 
prediction 

2.1. Theoretical prediction model 

There are two main ways to identify the failure of a cable consisting 
of n parallel wires [58]: one is that any one of the parallel wires breaks 
(serial model), and the other is when all of the parallel wires break 
(parallel model), as shown in Fig. 2. Assuming that the strength of a 
single wire fi (i = 1, 2, 3, … ,n) follows a normal distribution 
fi ∼ N(u0, σ0), where u0 is the mean and σ0 is the standard deviation. For 
the serial model, the tensile strength of a cable containing n parallel 
wires can be calculated as in Eq. (1). The distribution function of pre-
dicted strength using the serial model can be obtained by Eq. (2), where 
P is the distribution function of predicted strength, and Φ is the cumu-
lative distribution function of the standard normal distribution. 

f = min(f1, f2, f3,…, fn) (1)  

P(x) = 1 −

[

1 − Φ
(

x − u0

σ0

)]n

(2) 

As for the parallel model, the tensile strength of a cable containing n 
parallel wires can be calculated using Eq. (3), where fγ1, fγ2, fγ3,…, fγn are 
the actual tensile strengths of each single wire in descending order. The 
distribution function of the k-th order statistic fγk can be calculated by 
Eq. (4). The distribution function of predicted strength using the parallel 
model can be obtained using Eq. (5). 

f = max
[
nfγ1, (n − 1)fγ2, (n − 2)fγ3,…, fγn

]/
n (3)  

Pfγk (x) =
n!

(k − 1)!(n − k)!

∫ Φ

(
x− u0

σ0

)

0
tk− 1(1 − t)n− kdt (4)  

P(x) =
∏n

k=1
Pn− k+1

n fγk
(x) =

∏n

k=1

n!
(k − 1)!(n − k)!

∫ Φ

⎛

⎝
n

n− k+1 x− u0
σ0

⎞

⎠

0
tk− 1(1 − t)n− kdt

(5) 
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The mean and standard deviation of the predicted tensile strength for 
both the serial and parallel models can be expressed as Eqs. (6) and (7), 
respectively. 

u =

∫ +∞

+∞
xdP(x) (6)  

σ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∫ +∞

+∞
(x − u)2dP(x)

√

(7) 

Fig. 3 illustrates the mean and characteristic values (95% guarantee) 
[59,60] of the predicted tensile strengths of parallel CFRP cables 
calculated by the two models. The mean and coefficient of variation of 
the unit-length wire strength are 2000 MPa and 0.02–0.06, respectively, 

and the coefficient of variation is the ratio of the standard deviation to 
the mean. The figure shows that the mean strength calculated by the 
serial model is significantly lower than that of the parallel model, and 
the difference in characteristic values become more significant as the 
number of parallel wires (n) increases. Therefore, the parallel model is 
employed in this study to predict the strength of large-scale cables, in 
line with the actual failure mode where the entire cable may not fail 
when the first wire breaks, especially in cables with a significant number 
of parallel wires. 

2.2. Influencing factors and estimation measures 

When estimating the strength of parallel CFRP cables, it is important 
to consider various influencing factors that may cause errors. Therefore, 
this study proposes a method for estimating the tensile strength of 
parallel CFRP cables based on the parallel model and the Monte Carlo 
method, taking into account factors such as mean and coefficient of 
variation of unit-length wire strength, cable length, number of parallel 
wires, and installation and anchorage errors. 

A large-scale cable model (Fig. 4) is established based on the cable 
length and the number of parallel wires. A CFRP cable is divided into a 
parallel system of n parallel wires, and each single wire is divided into 
several unit-length segments with different material strengths according 

Fig. 1. Technical route for the rapid design of large-scale parallel CFRP cable.  

Fig. 2. Serial and parallel model failure modes.  
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Fig. 3. Mean and characteristic values of the predicted strength of parallel 
CFRP cables. Fig. 4. Computational modelling of large-scale parallel CFRP cables.  
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to the mean and coefficient of variation of the unit-length wire strength. 
The mean and coefficient of variation of the unit-length wire strength 

represent the strengths of a single wire of a pre-assumed unit length and 
can be determined through experiments or experience. The cable length 
can be expressed as the ratio of the total cable length (L) to the unit 
length (l0). Using the parallel model and conducting Monte Carlo cal-
culations, the results show the effect of the coefficient of variation of the 
unit-length wire strength, the cable length, and the number of parallel 
wires (Fig. 5 and Fig. 6). The shaded area represents the cable strength 
with a 99.7% guarantee. The cable strength decreases with increasing 
cable length, number of parallel wires, and coefficient of variation, 
respectively. Specifically, the cable strength experiences a decrease 
within the range of 0–1000 in cable length and 0–100 in the number of 
parallel wires, after which it stabilizes. Moreover, an increase in the 
coefficient of variation leads to a reduction in cable strength, further 
increasing the difference between the two models. 

Due to the relative installation error between the parallel wires, the 
initial distribution of strength is not uniform, resulting in a reduction in 
cable tensile strength, as shown in Fig. 7. Chinese steel structure con-
struction codes[61] require that the assembly gap of steel components 
should not be exceed than 2.0 mm. Based on this maximum limit, the 
effect of installation errors is estimated using Monte Carlo calculations, 
assuming a uniform distribution of errors and equal modulus of elas-
ticity for all wires. Fig. 8 shows the reduction in cable tensile strength for 
different lengths (l0 =280 mm) with 163 parallel wires and a coefficient 
of variation of unit-length wire strength of 0.01, under installation errors 
of a maximum of 0.5 mm and 1.0 mm. The shaded area represents the 
range of the 99.7% guarantee of the cable tensile strength. The effect of 
installation errors is significant for short cables but diminishes rapidly as 
the cable length increases. Considering the Chinese code’s limit of a 
2.0 mm assembly gap, this effect can be ignored for cables longer than 
30 m, but should be considered for shorter cables. 

Parallel CFRP cables are typically anchored using bonded or com-
posite anchorage systems that rely on adhesive bonding or contact 
friction between materials to withstand axial forces [62]. When a cable 
is subjected to stress, each wire elongates, but deformation of the 
anchorage causes reduced elongation near the centre of the anchorage. 
This deformation systematically decreases the cable tensile strength and 
is referred to as anchorage error, as shown in Fig. 9. To analyse the 
anchorage deformation patterns of different layers, the difference in 
anchorage displacement generated by 91 CFRP parallel wires with a 
diameter of 5 mm anchored in epoxy adhesive was calculated using 
finite element analysis. A 1/12 model was used for calculation due to the 
symmetry, as shown in Fig. 10. The spacing of the CFRP wires was 2 mm, 
and the modulus of the epoxy adhesive was assumed to be 2 GPa. The 
outer surface of the epoxy adhesive was fixed, and a stress of 2000 MPa 
was applied to all wires. 

To estimate the anchorage error of a parallel cable with any number 

Fig. 5. Effect of cable length and coefficient of variation on cable 
strength (n = 163). 

Fig. 6. Effect of number of parallel wires and coefficient of variation on cable 
strength (L/l0 =1). 

Fig. 7. Installation error for multiple wires.  

Fig. 8. Effect of installation error on cable strength.  

Fig. 9. Anchorage deformation under stress.  

Fig. 10. 1/12 finite element modelling of anchor.  
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of parallel wires using only one given maximum displacement, the 
number of parallel wires nk corresponding to an integer number of layers 
k is considered first for the case where the wires can be arranged in an 
ideal hexagonal arrangement (see Fig. 11). In the other case, the number 
of parallel wires is defined as n = nk+m, where m is the number of 
remaining wires in the outermost layer that cannot form an integer 
layer, and m<nk+1-nk. The number of layers is defined as L= k + m/ 
(nk+1-nk). Assuming cubic displacement curves for the different layers, 
where y represents the displacement of wires in layer x, L is the number 
of layers, and Δl is the maximum displacement of the convex surface of 
the anchorage. This cubic equation should satisfy the boundary condi-
tions y(0) = 0 and y(L) = Δl. Based on finite element analysis results 
and using the least squares method, the fitted equation is obtained as Eq. 
(8). The results are presented in Table 1. 

y = Δl •
(

0.7164
x3

L3 + 0.1484
x2

L2 + 0.1352
x
L

)

(8) 

Monte Carlo calculations were performed 100,000 times by selecting 
different numbers of parallel wires and different maximum anchorage 
displacements Δl (mean value of the unit-length wire strength: 
2000 MPa, coefficient of variation: 0.005, cable length: 100 unit- 
length). The results are shown in Fig. 12. It can be observed that the 
cable tensile strength decreases with increasing maximum anchorage 
displacement and number of parallel wires, demonstrating good conti-
nuity for different numbers of parallel wires. 

3. Optimal solution for unit-length wire strength with multi- 
source experimental data through genetic algorithms 

3.1. Development of the genetic algorithm method 

The cable tensile strength prediction methods mentioned previously 
require a known unit-length wire strength as a basis for estimation, 
which can only be obtained through experimentation or empirical data. 
To fully utilise the results of different test data with varied specimen 
sizes, a method using multi-source experimental data is developed. 
These multi-source experimental data refer to multiple test results of 
CFRP wires with the same material and diameter but different lengths, 
parallel numbers, and installation and anchorage errors. The total 
sample size of all tests should be at least two, otherwise the number of 
test data is less than the number of parameters and predictions will not 
be performed. The unit-length wire strength includes both the mean and 
coefficient of variation of the strength. The method for estimating the 
unit-length wire strength using genetic algorithms consists of four main 
steps and six sub-steps as follows, and the flowchart is shown in Fig. 13. 

(1) Collect tensile strength test data for single or parallel cables with 
the same material and wire diameter. 

(2) Define the unit length, which should be equal to or slightly less 
than the minimum test sample length. 

(3) Assign different weights to different samples based on factors 
such as accuracy, reliability, repeatability, and size of the tested wires or 
cables in the multi-source test data. 

(4) Estimate the mean and characteristic strengths of the unit-length 
wire that best fits the test data using genetic algorithms. This step further 
consists of six sub-steps: 

① Select reasonable upper and lower limits for the unit-length wire 

strength to restrain the searching range. Determine the maximum 
number of evolutionary generations T. Randomly generate N individuals 
as the initial population P(0). This method can use binary Gray coding 
for chromosome coding. 

② Calculate the fitness value for each individual in the population P 
(t) of the t-th generation. Three fitness functions are proposed to eval-
uate the fitness of the assumed unit-length cable strength based on 
available test data and artificially assigned weights. 

A. Weighted likelihood estimation (WLE) fitness function. 
The WLE fitness function is defined as follows: given a mean strength 

μ0 and coefficient of variation of the strength δ0, estimates of the mean 
and coefficient of variation of the strength for each test sample are 
calculated based on available test data and weights using Monte Carlo or 
neural network prediction (an alternative acceleration model in Section 
4). After obtaining the strength distribution of each test sample sepa-
rately, the maximum likelihood function is calculated using the proba-
bility density function of each sample as Eq. (9). An equivalent 
logarithmic function is chosen as the fitness function Eq. (10) with 
weights ki of test samples. A smaller value of this function indicates a 
better estimate of the initially assumed unit-length wire strength. 

lik(μ0, δ0) =
∏

pi(Ti) (9)  

ef = −
∑

kiln(pi(Ti) ) (10) 

Maximum likelihood estimation is a commonly used method but is 
biased and prone to overfitting due to its disregard for interconnections 
between samples and reliance on pre-assumed distributions. Significant 
size differences among samples may lead to estimation errors and local 
optimum solutions. 

B. Weighted Kolmogorov-Smirnov estimation (WKSE) fitness 
function. 

This study introduces the WKSE fitness function, which considers the 
differences in the reliability of experimental data. The WKSE fitness 
function is defined as follows: given a mean strength μ0 and coefficient 
of variation of the strength δ0, estimates of the mean and coefficient of 
variation of the strength are calculated for each test sample based on 
available test data and weights using Monte Carlo or neural network 
prediction. The distribution law of the material strength for each test 
sample is obtained, and the offset of the test data is calculated using Eq. 
(11), where Ti is the test value of the i-th test sample, μi and δi are the 
calculated mean and coefficient of variation of that test sample, 
respectively. The empirical distribution function for Δi is written as Eq. 

Fig. 11. Ideal hexagonal arrangement of wires.  

Table 1 
FEM and fitted displacements of the anchor.  

Layer 0 1 2 3 4 5 

FEM (mm)  0  0.04  0.14  0.34  0.64  1.14 
Fitted (mm)  0.00  0.04  0.14  0.33  0.65  1.14  

Fig. 12. Effect of anchorage error.  
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(12), where I[− ∞,x](Δi) is defined as Eq. (13). The WKSE statistic D, which 
represents the largest difference in the distribution function, is calcu-
lated as Eq. (14), where ki is the weight of the i-th test sample, and 
Φ(x) is the distribution function of x ∼ N(0, 1). A smaller value of this 
function indicates a better estimate of the initially assumed unit-length 
wire strength. 

Δi(μ0, δ0) =
Ti − μi

δiμi
(11)  

Fn(x) =
1

∑
ki

∑n

i=1

(
ki • I[− ∞,x](Δi(μ0, δ0) )

)
(12)  

I[− ∞,x](Δi) =

{
1,Δi ≤ x
0,Δi > x (13)  

ef = D(μ0, δ0) = max
(⃒
⃒
⃒
⃒Φ

(
x

∑
ki

)

− Fn(x)
⃒
⃒
⃒
⃒

)

(14) 

Unlike the WLE method, the WKSE method takes into account the 
relationship between data and evaluates the degree of closeness to a 
normal distribution. However, the WKSE statistic D can be highly sen-
sitive when the amount of test data is small, leading to significant errors. 

C. Kolmogorov-Smirnov weighted likelihood estimation (KSWLE) 
fitness function. 

To address these issues, a weighted maximum likelihood estimation 
method constrained by the Kolmogorov-Smirnov (K-S) test, called 
KSWLE, is proposed. The ideal K-S test statistic is defined as the expected 
value of the WKSE statistic D calculated using Eq. (14) for n normally 
distributed random variables Xi ∼ N(0, 1) (see Eq. (15)). The modified 
maximum likelihood function is defined as Eq. (16), and the equivalent 
Eq. (17) is selected as the fitness function, incorporating the test sample 
weight parameter ki. A smaller value of this function indicates a better 
estimate of the initially assumed unit-length wire strength. 

Dn = E

{

max

[⃒
⃒
⃒
⃒
⃒
Φ
(

x
∑

ki

)

−
1

∑
ki

∑n

i=1

(
ki • I[− ∞,x](Xi(0, 1) )

)
⃒
⃒
⃒
⃒
⃒

]}

(15)  

likD(μ0 ,δ0) =

∏
pi(Ti)

max
[

D(μ0 ,δ0)

Dn
, 1

] (16)  

ef = −
e
∑

{ki•ln[pi(Ti) ] }/
∑

ki

max
[

D(μ0 ,δ0)

Dn
, 1

] (17) 

The KSWLE method utilises the K-S test statistic to accelerate the 
maximum likelihood estimation process while avoiding problems such 
as overfitting in WLE and sensitivity in WKSE, resulting in faster 
convergence speed and better stability. 

③ Randomly select individuals from the population P(t) to be 
inherited in the next generation. The selection process follows the rou-
lette selection method, where the likelihood of selection is proportional 
to the individual’s fitness value, ensuring that individuals with higher 
fitness are more likely to be chosen. 

④ Apply the crossover operator to the population. The crossover 
operator determines the crossover position and probability of the 
selected individuals’ chromosomes. 

⑤ Apply the mutation operator on the population. The variation 
operator determines the mutation probability at different locations 
within the chromosomes of each individual. 

⑥ Terminate the evolution if the maximum number of evolutionary 
generations, T is reached. Otherwise, iterate to the next generation. 
Output the most suitable individual from the final population, and 
obtain the final solution by decoding the chromosome of that individual. 

Using the genetic algorithm with the WLE, WKSE, and KSWLE fitness 
functions, the optimal solution is obtained using sample data from Case 
2 (consisting of 43 samples). The population size is set to 48, and 24 
generations are iterated. The values of WLE, WKSE, and KSWLE fitness 
functions for each generation in each method are calculated and shown 
in Fig. 14. The curves of different colours represent the three different 
methods, with Fig. 14 (a), (b), and (c) showing the KSWLE, WKSE, and 
WLE values of the optimal individuals in each generation for different 
fitness functions. From Fig. 14 (b) and (c), it can be observed that the 
WKSE method yields the best results for WKSE values but exhibits sig-
nificant fluctuations in WLE values. The WLE method demonstrates the 
best convergence and results for WLE values but shows volatile WKSE 
values. Fig. 14 (a) indicates that the KSWLE method offers better 
convergence and stability. Fig. 14 (b) demonstrates that the KSWLE 
method is limited to a theoretical optimal WKSE value and seeks a better 
WLE value based on it. Fig. 14 (c) shows that the KSWLE method ach-
ieves faster convergence of WLE values compared to the MLE method, 
with similar final results. Consequently, the KSWLE method exhibits fast 
convergence speed, good stability, and can correct the biased MLE 
estimation restricted to the K-S test concerning sample size, making it 
suitable for solving the problem of multi-source test data in this study. 

3.2. Results and discussions of unit-length wire strength prediction 

In the unit-length wire strength prediction process, the estimated 
strengths of carbon fibres (Case 1) and parallel CFRP cables (Case 2) are 
calculated using the proposed methodology and existing data to validate 
its performance. 

Case 1. Tensile strength prediction for carbon fibres. 

In this paper, the method described above for parallel CFRP cables 
was also investigated for its applicability to carbon fibres. The strength 
data of carbon fibres at 1, 10, 20, and 50 mm lengths obtained by Bader 
and Preist [63] and reported by Smith [64] were re-predicted. 

Determine
unit length

Select weights
for raw data

Genetic algorithm 
solving

Initialize 
population

Calculate fitness 
function value

Selection
operator

Crossover 
operator

Mutation 
operator

WLE

Maximum 
generation

yes

no

WKSEKSWLE

Collect 
experiment data

Optimal unit-
length wire 

strength

Fig. 13. Flowchart of genetic algorithm method.  
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Predictions were performed using the modified Weibull estimation [18] 
method (data source: 1 +10 +20 +50 mm), the normal estimation 
method (data source: 1 mm), and four modified normal estimations with 
different data sources or weightings discussed in this study (data sour-
ces: 1 +10 mm, 1 +10 +20 mm, 1 +10 +20 +50 mm, and 
1 +10 +20 +50 mm weighted by 1, 1, 1, and 2, respectively). Fig. 15 
shows the specific experimental data and the results of different pre-
diction methods for the strength of 50 mm long fibres. In this case, the 
"Modified Weibull" method represents the best available prediction 
method, "Normal" represents the result of the normal distribution 
method with only one data source, and "Modified Normal" represents the 
result of the normal distribution method with weighted four data 
sources. The shaded area in the figure indicates the prediction range 
with a 95% guarantee. It is evident that the results obtained through the 
"Modified Weibull" method are significantly better than those obtained 
through the "Normal" method, but not as good as the "Modified Normal" 
prediction. 

Fig. 16 displays the overlapping probability between the test data 
and the predicted results (line graph) and characteristic strengths (bar 
graph) as primary parameters for engineering design. It can be observed 
that the accuracy of the ordinary normal prediction method is signifi-
cantly lower than that of the modified Weibull prediction, indicating 
that the accuracy of normal prediction using a single data source is low. 
However, the modified normal prediction method, which employs more 
than two sets of multi-source data, surpasses the modified Weibull 
prediction. The accuracy of the modified normal prediction can be 

further improved with more data or the addition of weights. Prediction 
using more than three sets of data is deemed safe for engineering 
applications. 

Case 2. Tensile strength prediction for parallel CFRP cables. 

The strength data of 1, 4, 10 and 20 m long wires and 61 × 4 m 
parallel CFRP cables (each cable consisting of 61 parallel wires and 
measuring 4 m in length) were obtained from Lan et al. [18] for pre-
diction purposes. Similar to Case 1, predictions were performed using 
the modified Weibull estimation [18] (data source: 1 +4 +10 +20 m), 
the normal estimation method (data source: 1 m), and four modified 
normal estimations with different data sources or weightings mentioned 
in this paper (data sources: 1 +4 mm, 1 +4 +10 m, 1 +4 +10 +20 m, 
and 1 +4 +10 +20 m weighted by 1, 1.25, 1.5, and 2, respectively).  
Fig. 17 illustrates the specific experimental data and the results of 
different prediction methods for the strength of 61 × 4 m parallel CFRP 
cables. As in Case 1, the "Modified Weibull" method represents the best 
prediction method, "Normal" represents the normal distribution method 
with only one data source, and "Modified Normal" represents the normal 
distribution method with weighted four data sources. The shaded area in 
the figure indicates the prediction range with a 95% guarantee. It can be 
observed that the "Modified Weibull" results are significantly better than 
the "Normal" results, but the "Modified Normal" prediction is remarkably 
close to the actual results. 

Fig. 18 illustrates the overlapping probability between the test data 
and the predicted results (line graph) and characteristic strengths (bar 
graph) as primary parameters for engineering design. Similar to Case 1, 
the accuracy of the normal prediction method is significantly lower than 
that of the modified Weibull prediction, indicating the low accuracy of 

Fig. 14. The process of genetic algorithms for solving the unit-length wire strength under WLE, WKSE, and KSWLE fitness functions.  
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normal prediction using a single data source. However, the modified 
normal prediction method that incorporates more than two sets of multi- 
source data outperforms the modified Weibull prediction. The accuracy 
of the modified normal prediction can be further improved with more 
data or by adding weights. The characteristic strengths predicted using 
multi-source experimental data closely match the test results, making 
them suitable for engineering applications. 

In this case, the accuracy of normal prediction using two data sets is 
higher, which may be attributed to the fact that the length of the target 
parallel CFRP cables aligns with the length of the second set of samples. 
This also demonstrates that incorporating high-quality test data can 
improve overall prediction accuracy, highlighting the scalability of this 
method. 

It is important to note that the proposed fitness function in the ge-
netic algorithm reduces the impact of poor test data. Nevertheless, if the 
test data error is significant, the solution may converge to a local opti-
mum. Good test data and reasonable weights are essential, and human 
expertise is required for accurate prediction. 

4. Speed and efficiency improvements of strength prediction 
through neural network 

4.1. Establishment of neural network optimization method 

In the design of large structures like ultra-long span cable-stayed 
bridges, where the strength of large-scale parallel cables is a crucial 
part of the overall design, employing the Monte Carlo prediction method 
described earlier can significantly reduce the efficiency of design and 
optimization. As a solution, this section proposes an improved neural 

network prediction method that utilises the results obtained from the 
Monte Carlo prediction method. 

Table 2 shows the range of values set for all independent dimen-
sionless parameters of influencing factors. The independent dimen-
sionless parameter for cable length is the ratio of cable length to unit 
length. Those for installation and anchorage errors are the ratios of the 
maximum error stresses to the mean strength of the unit-length wire. 
Within the range specified in Table 2, 1210 random samples were 
generated, with each sample subjected to Monte Carlo calculations 
10,000 times to obtain the mean and characteristic values of cable 
tensile strength. Among the obtained samples, 1000 were selected as 
training samples for the neural network, 200 as validation samples, and 
ten as test samples. The neural network, as shown in Fig. 19, consists of 
five nodes in the input layer and two in the output layer. The input nodes 
correspond to the parameters in Table 2, while the output nodes 
represent the mean strength (MS) and characteristic strength (CS), 
equivalent to the mean strength and coefficient of variation, respec-
tively. The intermediate layer contains two dense layers with activation 
functions of ReLU and linear, and they consist of 256 and 16 nodes, 
respectively. The learning parameters include 10,000 epochs, a batch 
size of eight, and a learning rate reduction of 20% every 1000 steps. 

The neural network process is showed in Fig. 20. The mean error for 
the validation sample is 0.0010, satisfying the design accuracy 
requirement. The prediction errors for the mean and characteristic 
strengths of the test samples range from − 0.32% to 0.18% and from 
− 0.29% to 0.18%, respectively. This indicates that the neural network 
can provide better predictions for the tensile strength of parallel CFRP 
cables. With the proposed neural network trained using Monte Carlo 
results, it is now possible to estimate the tensile strength of parallel CFRP 
cables at any length, even if it does not correspond to an integer multiple 
of the unit length. This allows for rapid design in complex scenarios, 
such as optimizing structures with numerous extra-long cables, thus 
significantly improving optimization efficiency. 

4.2. Results and discussions of the rapid design method for cable tension 
strength 

The assumption of normal distribution aligns better with the big data 
methodology employed in this paper than the Weibull distribution. To 
take multiple influencing factors into account, this method initially uses 
simulated data obtained through the Monte Carlo method and then ac-
celerates the process using the neural network method. Acceptable re-
sults can be obtained without employing an overly complex neural 
network, with further optimization possible according to engineering 
requirements. 

To demonstrate the application of this cable tensile strength pre-
diction method in structural design, a 1984 m span cable-stayed bridge 
with hybrid steel and CFRP cables was selected as a design case. As 
shown in Fig. 21, the bridge has 112 pairs of cables in the midspan, with 
a horizontal cable spacing ranging from 16–20 m, a minimum cable 
inclination of 18.1◦, and a tower height of 322.2 m above the deck. 
Among these cables, 52 pairs of cables near the middle of the span are 
parallel CFRP cables (blue lines in Fig. 21), and the remaining 60 pairs 
are steel cables. The steel cables comprise parallel steel wire cables with 
a strength of 1770 MPa, requiring a safety factor of no less than 2.7, and 
the number of steel cable types should be less than six. The main girder is 

Fig. 17. CFRP wires and cables strength data [18] and the estimation results by 
different prediction methods. 

Fig. 18. Characteristic values (bar graph) and overlapping probability (line 
graph) by different prediction methods. 

Table 2 
Value range of each parameter.  

Parameters Value range 

Coefficient of variation for unit-length wire strength (COV) 0–0.2 
Number of parallel wires (n) 1–1000 
Cable length (L/l0) 1–10000 
Installation error (IE) -0.025–0.025 
Anchorage error (AE) 0–0.05  
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made of Q370 steel with a elastic modulus of 206 GPa, a cross-sectional 
area of 2.302 m2, and a bending moment of inertia of 8.605 m4. The 
dead load of the bridge is 320 kN/m, and the live load follows a 4-lane 
load pattern according to the Chinese code [65]. 

Parallel CFRP cables have an elastic modulus of 160 GPa and no 
more than six cable diameter options. The unit-length wire strength is 
recalculated using the above CFRP wire/cable data. To maximize data 
utilisation, the initial data sets include 1 +4 +10 +20 m CFRP wire and 
61 × 4 m CFRP cable data, with respective weights of 1, 1.25, 1.5, 2.0, 
and 4.0. The predefined search ranges for the mean and standard de-
viation of the unit-length strength are set as 2200–3400 MPa and 
100–300 MPa, respectively, with a data accuracy of 0.1 MPa. The 
crossover probability is set at 0.9, and the variation probability is set as 
1/chromosome length. There are 32 populations, each with 64 genera-
tions. After the algorithmic operation, 200,000 Monte Carlo predictions 
are used to calibrate the optimal result of each generation. The calcu-
lated mean strength of the unit-length wire is 2808.5 MPa, with a 
standard deviation of 177.2 MPa, slightly higher than the experimental 
data of 1 m CFRP wires, which confirms the unreliability of a single set 
of samples. Carbon fibre composites are brittle materials with limited 
design experience and related codes. The design of this case is based on 
the reliability theory of FRP material design [66,67]. There are only two 
independent variables, load and structural resistance, both of which 
follow a normal distribution, and the reliability index of the structure 
can be calculated using Eq. (18), where μS and σS are the mean and 
standard deviation of loads; μR and σR are the mean and standard de-
viation of the structural resistances. 

β =
μR − μS̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σ2

R + σ2
S

√ (18) 

According to the Chinese code [68], the reliability index of brittle 
materials for parallel CFRP cables should be at least 5.2. Considering the 
existing research [69], the reliability index of parallel CFRP cables 
should be higher, and in this case, it was set at 18. The safety coefficient 
(for steel cables) and reliability index (for CFRP cables) in this paper 
only consider the main dead and live loads, with a certain margin 
reserved for other loads. The coefficients of variation for the constant 
and live load cable force were adopted as 0.05 and 0.45 [69], respec-
tively. The strength prediction of the parallel CFRP cable required for 
the design case is carried out through the neural network method, and 
the calculations are repeated several times during structural optimiza-
tion. After optimization, the safety coefficient, reliability index, cable 
size, and cable force of the 1/2 midspan cable are obtained as shown in  
Fig. 22. The values of the cable force in Fig. 22 are differentiated by 
colour, with the bending moment of the bridge shown at the girder 
position. The design cable force varies uniformly, indicating good 
structural performance. Therefore, the parallel CFRP cable design 
method proposed in this paper is suitable for structural cable design. 

In general, Fig. 22 demonstrates a high level of design for a cable- 
stayed bridge that surpasses the currently known maximum span. The 
transition between steel and CFRP cables is smooth in terms of structural 
performance, with the allowable stress of parallel CFRP cables 
decreasing gradually with increasing cable length. Conventional design 
methods may result in an unsafe design of CFRP cables, whereas this 
rapid design method can consider parallel CFRP cable force reduction by 
conveniently adding programming over many iterations and optimiza-
tions. An automatic cable size and force optimization program assisted 
in the design of the cable-stayed bridge in this case, although it is beyond 
the scope of this paper and does not affect the conclusions. 

5. Discussions and conclusions 

This study proposes a method to rapidly predict and adaptively 
correct the tensile strength of large-scale parallel CFRP cables using 
multi-source experimental data and an integrated approach that in-
corporates Monte Carlo simulations, Neural Network algorithms, and 
Genetic algorithms. 

Main factors that affect the tensile strength of parallel CFRP cables 
are investigated, using the Monte Carlo method, incorporating the 
parallel force model and the normal distribution law of material prop-
erties. It is found that the cable strength is significantly reduced with the 
increase in cable length, number of parallel wires, and material coeffi-
cient of variation. Furthermore, the strength of short cables is also 
decreased by anchorage and installation errors. 

To obtain the basic prediction parameter, the unit-length wire 
strength, a genetic algorithm method is proposed. This method utilises 
multiple sources of test data simultaneously. Additionally, a new KSWLE 
fitness function is introduced to address overfitting issues, leading to 
faster convergence, better stability, and improved extensibility. The 
genetic algorithm method minimizes the influence of experimental 
conditions and size effects, resulting in enhanced prediction confidence. 

To enhance its usability, a neural network prediction model is 
established based on the samples generated through Monte Carlo 

Fig. 19. The structure of the neural network built.  
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Fig. 21. Layout of the case bridge (m).  
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calculations. This neural network prediction expands the applicability of 
the method and significantly improves the speed of large-scale cable 
strength estimation. Building upon this accelerated approach, a 
reliability-based design method is developed for large-scale parallel 
CFRP cables in large structures. Ultimately, the rapid design method 
demonstrates excellent performance in the design of an ultra-long span 
cable-stayed bridge. 

The method proposed in this study can enhance the efficiency of 
utilising experimental data and progressively improve prediction accu-
racy with increasing data volume. To improve prediction accuracy, it is 
crucial to conduct pre-checks on the experimental data and assign 
appropriate weights to data of varying sizes. Additionally, the scarcity of 
experimental data due to the challenge of testing large-scale CFRP cables 
poses a limitation. Therefore, it is necessary to validate the design 
method proposed in this paper through experimentation. Furthermore, 
extensive research is required to thoroughly investigate the reliability- 
based design method, particularly concerning the probability of struc-
tural loads. Lastly, although this method allows for rapid design, further 
investigation is needed to formulate simplified formulas that can be 
assimilated into standards and offer more direct design guidance. 
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