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A B S T R A C T   

Based on the bending-active concept, this paper presents a self-shaping system with bunched carbon fiber- 
reinforced polymer (CFRP) rods to construct complex curved surfaces, establishing an overall design and con
struction process. Such component consists of a bunch of slender and easily bendable CFRP rods that are pre
formed and then bounded by connecting joints. Then, those components form free-form spatial structures. The 
proposed system offers several advantages: strong designability, low transportation cost, short construction 
period, polished appearance and low maintenance requirements during service. For component design, to 
determine the shape of such component, a two-stage mechanical analysis is proposed based on the large 
deformation theory and finite element analysis (FEA): a form-finding process to determine the deformed 
component shape through its cross-sections and boundary-load conditions; and a reverse form-finding process to 
obtain these above-mentioned parameters from a given component shape. The reliability of both methods is 
verified through in-plane bending tests. A design demonstration of a saddle-shaped curved spatial structure is 
performed using this method. Overall, the proposed system can guide the actual construction projects of complex 
curved surfaces with self-shaping bunched CFRP rods.   

1. Introduction 

Free-form spatial structures, characterized by double-curved sur
faces, have emerged as a new generation of space-frame structures, of
fering architectural freedom and creativity beyond traditional geometric 
shapes [1]. Advancements in computer technology have facilitated their 
practical application, enabling rich architectural expression and im
pactful visual designs. These structures are commonly found in 
large-span buildings such as museums, libraries, sports venues, and 
mosques. Large-span free-form spatial structures can be classified into 
two categories based on their construction methods: cast-in-place and 
prefabricated. Cast-in-place structures are usually constructed by pour
ing concrete into specially shaped formwork on-site, resulting in longer 
construction time and higher cost. On the other hand, prefabricated 
structures involve preparing components in a factory and then trans
porting them to the site for assembly. Prefabrication offers convenience, 
reduced construction time, and environmental benefits. One notable 
prefabrication-based method for constructing free-form spatial struc
tures is bending-active technology. 

“Bending active” is a term commonly used to describe bent beams or 
free-form structures whose geometric shapes are achieved through 
elastic deformation from initially straight or flat components, such as 
rods, cables, and flexible membranes [2]. Typically, in normal pre
fabricated engineering projects, components usually need to be pro
cessed into specific shapes beforehand to form a spatial structure with 
minimal internal stress considering self-weight other than other loads. 
Unlike traditional prefabrication methods that require pre-bent com
ponents, bending-active concept allows for on-site bending of compo
nents to achieve the desired shapes. Hence, the components can be 
transported compactly to the construction sites and bent manually or 
mechanically to transform into pre-designed shapes automatically. 

The application of bending-active concept in large-span spatial 
structures can be traced back to the 1970s. Mannheim Multihalle, the 
world’s first bending-active grid shell for the German Architecture 
Exhibition, was built by Frei Otto, with the span and height of approx
imately 60 and 20 m, respectively [3]. Limited by computing technology 
at the time, the form-finding process was based on the hanging-chain 
method. Hence, some deviation exists in the obtained grid shell 
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Text
基于主动弯曲的概念，本文展示了一种可以使用捆扎的碳纤维增强复合材料（CFRP rods）rods去建造复杂弯曲表面的自成形体系，并且建立了一种全面的设计和建造过程。这种component包含了一束slender且易弯曲的CFRP索，巴拉巴拉。然后那些component形成了一种free-form的空间结构。这种体系有以下优点：可设计性强、运输成本低、建造周期短、外表精美（polished appearance）以及建造过程中保持性要求低
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morphologies [4]. Such construction process can be roughly divided into 
two steps: 1) scaffolding towers lifted by forklift trucks are used to push 
the plain mesh into its three-dimensional shape; 2) bolts are tightened so 
that rods at the connections cannot be misaligned, and the boundaries 
are fixed once the final shape is achieved [5]. Buro Happold also utilized 
the aforementioned bending-active concept to construct various build
ings, such as Earth Centre, Japan Pavilion, Downland Museum, and 
Savill Garden [6–10]. S. Puystiens et al. came up with a new type of 
large-span membrane structure comprised of a bending-active ring and 
beam elements, contraction cables, and membranes [11]. By changing 
the amount of prestress in cables and membranes, the initially flat 
structure can transform into a three-dimensional pringle-shape [12]. E. 
Kriklenko et al. achieved the bending-active membrane structure by 
threading, and used a particle spring system for form-finding [13]. The 
SOFiSTiK team presented a simple technique ACTB for creating 
bending-active beams and found it difficult to introduce a significant 
torsional bending in bending-active structures [14]. Daniel Sonntag 
et al. introduced a kind of double-curved shell structures, whose 
segmented flat timber shells were bent into the designed shapes and 
connected by a traditional textile connection method, achieving large 
span with less material use [15]. Moreover, the ICD/ITKE Research 
Pavilion, constructed at University of Stuttgart in 2010, reflects the idea 
of bending-active concept by changing the width and interaction of 
plywood panels [16]. 

In terms of materials, if bending-active concept is applied to create a 
shape, components generally incur significant internal stresses, which 
accordingly imposes certain requirements on the material’s mechanical 
properties. Kotelnikova-Weiler et al. proposed the evaluation indicators 
for bending-active material properties, including elastic limit strain, 
stiffness, tenacity, price, environmental properties, and high durability 
[17]. According to their analysis, fiber-reinforced polymer (FRP), an 
emerging high-performance material comprised of fiber reinforcement 
and resin matrix, is very suitable for bending-active construction. 
Among various types of FRPs, CFRP has many advantages, including 
high chemical stability, excellent mechanical properties, and strong 
designability [18,19]. It is worth noting that the ultimate rupture strain 
of pultruded CFRP rods is around 1.5 %, while 2.5 % for glass FRP 
(GFRP) and 3 % for aramid FRP (AFRP) [20,21]. 

Tayeb, F et al. constructed a temporary lattice spatial structure called 
the Soliday Pavilion by using 12 m GFRP rods, which were first 
assembled on the ground and then lifted to their designated positions by 
construction struts, with their ends anchored to the foundations [22,23]. 
Similarly, Nicholas, P et al. used GFRP rods for the construction of the 
Faraday Pavilion at Roskilde Festival 2012 and conducted three-point 
bending tests and nonlinear finite element analysis (FEA) of the whole 
structure [24]. Moreover, W.X. Huang et al. constructed a double-layer 
GFRP grid shell, Mobius Pavilion, encompassed over an area of 10 × 10 
m with its highest point of 4 m [25]. 

Although the bending-active concept has been applied in many en
gineering cases, some key issues still need to be addressed. On one hand, 
it is difficult to bend a large cross-sectional FRP component into a large 
curvature, and its internal stress after forming is also quite high, which is 
not conducive to subsequent loading. Besides, its transportation cost 
may be very high. On the other hand, the stiffness of the component 
needs to be adjusted along the axis to achieve form-finding, that is, a 
variable cross-section is needed. A tricky problem is that a single 
component typically cannot achieve variable cross-section along the axis 
mainly because it is difficult for the pultrusion process to produce var
iable cross-section FRP components. 

Therefore, this paper introduces a novel construction method for 
bunched rods, which enables the self-shaping construction of complex 
curved free-form spatial structures. This method offers several 

advantages, including strong designability, short construction period, 
graceful appearance, and ease of implementing large-scale structures. 

To develop the abovementioned structural system, the paper un
dertakes the following key tasks: 

• A novel method implementing the bending-active concept is pro
posed by using straight components with variable cross-section (or 
bending stiffness) to alter the curvature. This enables the component 
to form certain curved shapes under given loads automatically.  

• Specific methods for form-finding and inverse processes of the 
bunched rods are proposed based on the large deformation theory. 
These methods are further verified through FEA and experimental 
investigations. 

• A practical design case study of a saddle-shaped canopy demon
strates the feasibility of the proposed design method and self-shaping 
system in complex curved surface construction. The findings of this 
study can guide actual engineering projects. 

2. Concept of bending-active bunched CFRP rods 

2.1. Construction of bunched CFRP rods 

Based on the bending-active concept, the design method for a free- 
form spatial structure system with complex curved shapes can be ach
ieved by variable cross-section bunched CFRP rods. 

Fig. 1(a) shows the construction of bunched CFRP rods, where 1 and 
2 represent single CFRP rod and connecting joint respectively. The 
connecting joint has multiple positioning holes, through which slender 
CFRP rods with smaller diameters and lower rigidity can pass one-to- 
one. In this way, CFRP rods can be relatively fixed in position with 
connecting joints by friction and adhesion forces, then a component with 
a much larger cross-sectional area can be formed, which allows multiple 
slender rods to work together and saves material use compared to the big 
cross-section rod with the same stiffness. The variable cross-sections of 
the bunched CFRP rods are achieved by changing the size of the con
necting joints and the number of slender CFRP rods, as shown in Fig. 1 
(b). When the cross-sectional area of a component needs to be increased, 
connecting joints with larger diameters can be used, and rods can be 
added as required. On the contrary, when the cross-sectional area needs 
to be reduced, connecting joints with smaller diameters can be used, and 
redundant rods should be cut off at the next joint. 

The terms “rod” and “component” are further elaborated here to 
avoid confusion. In this paper, a “rod” refers to a single member, while a 
“component” is made up of rods, including bunched CFRP rods 
mentioned here and bending test components mentioned in Section 4. 
To sum up, as shown in Fig. 2, the structure is composed of components, 
and components are composed of rods. 

In the application of bending-active concept, the bunched CFRP rods 
proposed above can effectively solve these two key problems mentioned 
in Section 1.  

• A construction method called “separation-to-integration” is proposed 
to solve the problem of bending difficulty of a large cross-sectional 
CFRP rod into a large curvature. That is, before assembly, those 
straight rods are pre-bent separately to have a certain initial curva
ture and then sequentially threaded through the positioning holes of 
connecting joints to form an entire component. Of course, the CFRP 
rods and connecting joints can be transported separately in the actual 
construction process, which can reduce the transportation cost.  

• The fabrication of a single CFRP rod with variable cross-section 
directly by pultrusion is extremely hard, and additional processing 
such as CNC cutting is generally required. However, for the bunched 
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Fig. 1. The schematic diagram of bunched CFRP rods’ construction.  

Fig. 2. The interrelationship of rod, component and structure.  

Fig. 3. A single span beam from straight to the configuration with the maximum deformation.  

P. Feng et al.                                                                                                                                                                                                                                     
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CFRP rods, variable cross-section can be fulfilled by changing the 
size of the connecting joints and the number of slender CFRP rods 
mentioned above. Hence, large deformation components with com
plex forms can be further realized. 

2.2. Basic mechanical behavior of elastic component 

The Bernoulli-Euler (BE) model and the Timoshenko model are the 
most common mathematical models for beams in structural mechanics. 
Because the slenderness ratio of bunched CFRP rods is usually very 
large, it can be regarded as BE component in mechanical analysis. Levien 
summarized in detail the process by which scientists of all generations 
calculated the geometry of elastic bent beams [26]. One of the landmark 
events is that Euler published the first completely characterized family 
of Elastica curves based on variational techniques in 1744, as shown in  
Fig. 3 [27]. Nowadays, the problem of the Elastica can be approached 
from many different angles, including the calculus of variations, ellip
tical integrals and mechanical equilibrium. 

The first approach involves complex mathematical methods to 
develop closed form solutions. As known to all, Elastica is a curve that 
generates a minimum of potential bending energy in a constrained 
system. Besides, potential energy of a bent component behaves pro
portionately to the square of the local curvature, as shown in Eq. (1), 
where 1/ρ(x) is the curvature at different x coordinates, Ẽ is total 
bending energy, and l is the length of the deformed component. The 
solution to this minimum energy problem involves calculus of variations 
which is not followed up here, since the limited and purely geometric 
description of the Elastica is not practical for the design of bending- 
active structures. 

The Bernoulli-Euler law formulates a second order nonlinear differ
ential equation for large nonlinear deformations, as shown in Eq. (2) 
[28], where w(x) and M(x) are the deflection and bending moment at 
different x coordinates, and EI is the bending stiffness of the component. 
The elliptical integral method is to solve Eq. (2) by integration. It can 
only solve some typical buckling deformation problems, that is, it is also 
not applicable to the components under complex boundary & load 
conditions. 

Ẽ[1/ρ(x)] = 1
2

∫ l

0
EI[1/ρ(x)]2dx (1)  

1
ρ(x) =

wʹ́ (x)
[
1 + wʹ(x)2

]2/3 = −
M(x)

EI (2)  

Hence, mechanical equilibrium method is adopted in this paper to solve 
the deformation problem of components under complex conditions, 
mainly introduced in Section 3.1. 

3. Analysis of structural form-finding and inverse processes 

3.1. Structural form-finding process: large deformation theory and FEA 

Calculating the deformation of components under the given stiffness 
and boundary & load conditions is defined as structural form-finding 
process. The above process can be achieved through FEA or theoret
ical calculation, and the FEA results can be used as the verification of the 
large deformation theoretical analysis results. 

In the large deformation theory, an object can be referred to as a rod 
if its lateral dimension is much smaller than its length. The following 
assumptions are made for large deformation rods: 1) the interaction 
forces among the rods are known and considered as concentrated forces 
acting at a point on the rod, that is, only considering the relationship 
between rod deformation and applied external forces; 2) Kirchhoff’s 
assumption is used in deriving the deformation equations of the rod, 
which assumes that the cross-sections perpendicular to the axis of the 
rod remain plane after deformation and are still perpendicular to the 
deformed central axis. 

A micro-segment AB of the deformed rod is taken out to analyze its 
instantaneous stress state, as shown in Fig. 4, where s is the one- 
dimensional drag coordinate along the central axis of the rod; r is the 
position vector of the micro-segment centroid relative to fixed point 0; F 
and M are the force and moment vectors acting on the section A or B; γ is 
mass per unit length; q is the external force vector acting on the micro- 
segment and m is the body moment or surface moment per unit length. 
Hence, the angular momentum L of the micro-segment can be derived 
from Eq. (3), where “× ” represents the vector product. Eq. (4) can be 
obtained from the momentum theorem and Eq. (5) is from the mo
mentum theorem. Eq. (6) can be further obtained by Eq. (4) and Eq. (5) 
[29]. 

L = r × q = γ(s)
(

r ×
∂r
∂t

)

ds (3)  

∂
∂t

[

γ(s)
∂r
∂t

]

=
∂F
∂s

+ q (4)  

γ
(

r ×
∂2r
∂t2

)

=
∂
∂s
(r × F) +

(

F +
∂F
∂s

ds
)

+
∂M
∂s

+ m + r × q (5)  

∂r
∂s

× F +
∂M
∂s

+ m = 0 (6) 

Decomposing the vectors in Eq. (6) along the natural coordinates (g1, 
g2, g3) yields the expression of the motion equation along the natural 
coordinates, i.e., Eq. (7), where g1 is directed along the tangent di
rection of the rod and pointing to the side where s increases; 1/ρ and 1/τ 
are the curvature and torsion, respectively; g1 is the length trans
formation coefficient, which can be calculated by Eq. (8); the length of 
the micro segment after deformation is ds; a1, a2 and a3 are the accel
eration components in three directions. 

If the rod moves in the plane, i.e., the XY plane coordinate system, 
then 1/τ = 0, F3 = q3 = 0, M1 = M2 = m1 = m2 = 0. Therefore, Eq. (7) 
can be simplified to Eq. (9), which is the motion equation of the rod in 
the plane. In the large deformation analysis of the rod in this paper, the 
acceleration is zero because the static equilibrium state is considered. 

Fig. 4. Force analysis of the micro-segment AB.  
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γa1 =
1
g1

∂(F1g1)

∂s
− F2

1
ρ + q1 (a)

γa2 =
∂F2

∂s
+ F1

g2
1
ρ − F3

g1

τ + q2 (b)

γa3 =
∂F3

∂s
+ F2

g1

τ + q3 (c)

0 =
1
g1

∂(M1g1)

∂s
− M2

1
ρ + m1 (d)

0 =
∂M2

∂s
+ M1

g2
1
ρ − M3

g1

τ − g1F3 + m2 (e)

0 =
∂M3

∂s
+ M2

g1

τ + g1F2 + m3 (f)

(7)  

g1 =

⃒
⃒
⃒
⃒
∂r
∂s

⃒
⃒
⃒
⃒ =

ds
ds

(8)  

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

γa1 =
1
g1

∂(F1g1)

∂s
− F2

1
ρ + q1 (a)

γa2 =
∂F2

∂s
− F1

g2
1
ρ + q2 (b)

0 =
∂M3

∂s
+ g1F2 + m3 (c)

(9) 

It is assumed that the angle between the tangent direction at the end 
of the rod and the vertical direction is θ (θ = α at the left and θ = 0 at the 
right), as shown in Fig. 5. By bringing the known conditions into the 
motion equation of the rod, Eq. (9a) and (9b) are automatically satisfied 
when the rod is statically balanced, and Eq. (9c) can be written in the 

form of Eq. (10). Multiplying both sides of the equation by dθ/ds and 
integrating yields Eq. (11), where the bending moment is M3 at the left 
endpoint, hence the curvature is M3/EI. Simplifying this expression 
yields the relationship between θ and s, as shown in Eq. (12). 

EI
d2θ
ds2 = − (F2sinθ − F1cosθ) (10)  

EI
2

∫ θ

θ=α
d
(

dθ
ds

)2

= F2

∫ θ

θ=α

dcosθ
ds

+ F1

∫ θ

θ=α

dsinθ
ds

EI
2

[(
dθ
ds

)2

−

(
M3

EI

)2
]

= F2(cosθ − cosα) + F1(sinθ − sinα)
(11)  

dθ
ds

= −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2
EI

[F2(cosθ − cosα) + F1(sinθ − sinα) ] +
(

M3

EI

)2
√

(12) 

The X and Y coordinate directions are shown in Fig. 5. Hence, the 
displacement of the X and Y directions at the left endpoint can be ob
tained by integrating along the rod, as shown in Eq. (13). It should be 
noticed that the stiffness EI is changed into E(θ)I(θ) in Eq. (13). During 
the self-shaping design process in this paper, I changes with the inde
pendent variable s or θ but E remains constant because of the unchanged 
material. However, to account for the universality of the formula and 
incorporate advancements in technologies (such as 3D printing using 
various materials), E has the potential to be altered. Therefore, the no
tation E(θ) is employed in Eq. (13). 

Fig. 5. X and Y coordinate direction identification.  

Fig. 6. Boundary & load conditions of a half rod (Fx, Fy, M3 in Table 1, 
displacement and rotation U1, U2, UR3 in FEA are shown). 

⎧
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x =

∫ s

0
cosθds =

∫ θ= π
2

θ=0

cosθ
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2
E(θ)I(θ)

[F2(cosθ − cosα) + F1(sinθ − sinα) ] +
(

M3

E(θ)I(θ)

)2
√ dθ

y =

∫ s

0
sinθds =

∫ θ= π
2

θ=0

sinθ
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2
E(θ)I(θ)

[F2(cosθ − cosα) + F1(sinθ − sinα) ] +
(

M3

E(θ)I(θ)

)2
√ dθ

(13)   
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A finite element model of slender rod was established to verify the 
reliability and validity of the above theory. Assuming the rod’s cross- 
section was circular, with both ends fixed on a horizontal plane. The 
ends’ axial direction was perpendicular to the plane, and the length of 
the rod L was 27.64 m (taking the length of the most marginal compo
nent in the design case in Section 5). Only half of the rod needed to be 
analyzed in FEA due to symmetry, as shown in Fig. 6. The commercial 
finite element software ABAQUS was chosen to analyze the deformation 
and stress of objects (including rods, components or the total structure) 
in this paper. In the Property module, the section of the rod was ar
ranged in beam type. In the Step module, the Nlgeom option should be 
turned on for large deformation calculation. One end of the rod was 
fixed, meaning that all the displacements and angles were restricted, and 
the other end was under a given rotation and displacement (namely, U1 
= − 19.804 m, U2 = − 13.049 m, UR3 = 1.571 radians). Because the 
rod’s slenderness ratio is too large, applying both rotation and 
displacement at the same time will lead to distortion near the end of the 
rod, making it difficult to bend into the target shape, as shown in Fig. 7. 
Therefore, in the Step module, three static steps were set to successively 
apply U1, UR3 and U2 on one end of the rod. After meshing the rod, the 
type of each element was B32 (a 3-node quadratic beam in space), and 
the mesh sizes (representing the size of element) were set to 100 mm, 
50 mm, and 25 mm. 

The calculation results of rod-end reaction forces are presented in  
Table 1 (the numbers in parentheses are relative error compared to mesh 
size 100 mm). The mesh convergence analysis aims to investigate the 
degree of sensitivity of computational results to mesh size variation. In 
order to determine the accuracy, the FEM results (Fx, Fy, and M3 in 
Fig. 6) for different mesh sizes (50 mm and 25 mm) were compared to 
those obtained from 100 mm. If the discrepancies were minimal, it 
indicated that the 100 mm mesh size was capable to generate relatively 
precise FEA results. Table 1 shows that, when the mesh size was reduced 
to half (50 mm), the discrepancies in Fx and M3 were 3.10 % and 0.33 %, 
respectively. Further reducing to a quarter (25 mm), the discrepancies in 
Fx and M3 were 9.39 % and 0.31 % respectively. Since Fx had a 
magnitude two orders higher than Fy, the left end of rod could be 
regarded as a sliding support condition, and therefore, the Fy result was 
not considered in this analysis. Conclusively, considering both accuracy 
and computational efficiency, a 100 mm mesh size proves to be suffi
ciently fine for numerical analysis. 

Subsequently, the theoretical results of left endpoint’s displacement 
(18.011 m and 14.620 m respectively) was computed with the input of 
reaction forces from FEA analysis using 100 mm mesh size. The theo
retical results were compared with the FEA input (|U1| = 19.804 m, |L- 
U2| = 14.591 m), and the relative error was within 1 %, which validated 
the effectiveness of the large deformation theory. Two points are worth 
noting here. On one hand, the theoretical solutions should have 
considered the elongation of the rod (i.e., g1 ∕= 1). On the other hand, the 

rod may exist with an inflection point under external forces and mo
ments as shown in Fig. 7. In such case, the calculation of displacement in 
X and Y directions requires integration in two segments from 0 to β and 
from β to π/2 based on Eq. (13). 

In a word, through large deformation theory and FEA, it is mighty 
feasible to calculate the rod’s deformation under the given stiffness, 
boundary, and load conditions. 

3.2. Inverse form-finding method: segmented calculation method 

The inverse form-finding calculation method is used to determine the 
stiffness distribution along the axis of a component based on its 
deformed shape and external load conditions. Using the idea of calculus, 
the segmented calculation method is proposed. It first divides a certain 
length of the component into several small sections, and then calculates 
the bending stiffness of each section based on its own deformation. Two 
approaches can be employed to achieve this: database and theoretical 
solution. 

The first approach comprises two main steps:1) establish a database 
of components’ deformation modes under different variable cross- 
sections with the same boundary & load conditions; 2) select the cor
responding variable cross-section form by comparing the given shape 
with those in the database. The process of building the database is 
illustrated on the left side of Fig. 8. To begin with, a straight component 
with the same length as the given one is created in the finite element 
software. After that, the component is divided into several sections and 
assigned a cross-sectional property Ai. And then, the boundary & load 
conditions are applied to calculate the shape, and the coordinates of 
nodes on the component Bi are derived. At last, a database including B1, 
B2, … Bn can be obtained after n iterations. The process of determining 
the component’s variable cross-section form is illustrated on the right 
side of Fig. 8. First, the target component is divided into equal sections 
and the coordinates are exported. Then, calculate the discrepancy be
tween the above and those in the database. Hence, the least discrepant 
component’s variable cross-section form will be finally determined. This 
approach is selected in this paper. 

Another approach which can obtain the cross-section forms is the 
theoretical solution. When the component’s deformation is known, the 
bending stiffness EI of each small section can be obtained by directly 
solving Eq. (13), that is, the cross-section of each segment is obtained. 
Further, the variable cross-section form of the entire component can be 
obtained by extracting the deformation data of each section and calcu
lating their bending stiffness in turn. 

Particularly worth mentioning here is that the above calculation 
obtained is the bending stiffness EI distribution of the component along 
its axis. To establish the relation between EI and the section shape of the 
component, it can be achieved in the following two ways:  

• If connecting joints of the bunched CFRP rods are dense enough, 
Kirchhoff’s assumption can be assumed tenable. Thus, the theoretical 
EI of the section can be calculated directly and compared with results 
of segmented calculation method. When the two are consistent (or 
close), the relation between component section and EI can be 
established. 

Fig. 7. The FEA results (right figure shows the ideal calculation result, and the 
inflection point is defined). 

Table 1 
Mesh convergence analysis results in FEA.  

Mesh size (mm) 100 50 25 

Reaction forces of 
rod’s end 

Fx (N) 116.363 119.972 
(3.10 %) 

127.290 
(9.39 %) 

Fy (N) -8.506 -8.971 
(5.47 %) 

-1.732 
(79.6 %) 

M3 

(N⋅mm) 
3986.290 3973.130 

(0.33 %) 
3973.990 
(0.31 %)  
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• If the distance between connecting joints is too large to meet 
Kirchhoff’s assumption, it is necessary to establish a finite element 
model of the component, and apply a unit angle at both ends to get 
the bending moment. The equivalent EI is equal to Mρ, where ρ is the 
curvature radius of the bending component. 

4. Experimental investigation on bending properties of CFRP 
components 

4.1. Scheme and process 

To further verify the structural form-finding results from the large 
deformation theory and FEA, the planar bending tests have been 
designed for slender components. 

All components in the experiment were made of CFRP, whose resin 
and fiber content were about 26 % and 74 %, respectively. Based on the 
test results of material properties, the average tensile strength of a CFRP 
rod with a diameter of 8 mm was 2416 MPa, and its tensile elastic 
modulus was 163.5 GPa. Those components were 9 m long and divided 
into two types: single rod (SR) and variable-section component (VC), as 
shown in Fig. 9. Here, the cross-section of SR was circular with a 
diameter of 7.3 mm, while VC was composed of one 9 m main rod and 
four 3 m auxiliary rods. In the bending tests, auxiliary rods were 
attached to both ends of the main rod with tape to ensure that they could 
work together. There is no obvious slipping between them during the 
tests. However, in real-world applications, the number of rods contained 

in a component is much greater than the above. In such cases, specially 
designed joints are indispensable for effectively connecting and forming 
the overall spatial structure. Besides, due to low bending stiffness of SR, 
it is prone to out-of-plane instability. Therefore, the 3D printed 
connector was designed to connect two SRs horizontally together (with 
internals of 1 m) to improve their out-of-plane stiffness. 

The two ends of tested components were connected to two sliding 
steel bases, one of which was fixed, and the other was pushed to bend the 
component (the moving path is shown by the yellow arrow in Fig. 11). 
The support condition could be change between fixed with certain an
gles and pinned by adjusting the fastening force of the bolt shown in  
Fig. 10. The angle between component axis and the ground is mentioned 
in Table 2, where “45 or 90◦” and “-” means the connection is fixed or 

Fig. 8. The flowchart of segmented calculation method.  

Fig. 9. The experiment components (SR and VC).  

Fig. 10. The schematic diagram of sliding steel base.  
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pinned, respectively. In the “SR-0” case, the rod was laying horizontally 
on the ground to avoid the influence of self-weight. 

The shape of the component was measured by a total station and its 
vertical displacement at midspan was measured by a displacement 
gauge. The SR and VC components were both measured at four loading 
stages as follows:  

• Stage 1: The two ends of the component were 7352 mm apart, both 
fixed with an angle of 45◦ between the axis of the component to the 
ground (SR-1 and VC-1).  

• Stage 2: The two ends of the component were 5720 mm apart, and 
the rotation at both ends of the component were not restricted, 
namely pinned (SR-2 and VC-2).  

• Stage 3: The two ends of the component were 5720 mm apart, both 
fixed with an angle of 90◦ between the axis of the component to the 
ground (SR-3 and VC-3).  

• Stage 4: Based on Stage 3, three 2 kg weights were added and 
separately hung at three points as shown in Fig. 11 (SR-4 and VC-4). 
During the process of hanging weights, the out-of-plane displace
ment was limited by pulling a horizontal thin string at midspan. 

Therefore, there are nine different working conditions in total, as 
shown in Table 2. It is worth noting that SR-0 to SR-4 are five different 
working conditions (due to changes in boundary conditions and external 
loads) of the same component SR, which also applies to VC. 

4.2. Deformation analysis 

FEA outlined in Section 3.1 was used to simulate the deformation 
shape of the components under different working conditions. 
Comparing the FEA results with bending test results, as shown in 
Table 4. The red curve represents the test result and the yellow dotted 
curve represents the FEA result. The calculation result of R2 (coefficient 
of determination) approaches 1, indicating better agreement between 
the deformation shape obtained from the test and FEA. Errors primarily 
originate from the self-weight of the wires connected to the displace
ment gauge, which slightly increases the deformation of the 
components. 

The displacement in the X and Y directions in the span of the 

component could be obtained by the large deformation theory in Section 
3.1, and the results are shown as blue crosses in Table 4. The midspan Y 
coordinates calculated by FEA and theory were compared with experi
mental results, as shown in Table 3 (the numbers in parentheses are 
relative error compared to experimental results). 

Since the self-weight of components was not considered in the 
calculation process, the results of displacement in Y direction were 
generally larger than the experimental and FEA results. However, the 
comparison of SR-0 and SR-2 shows that the impact of self-weight on the 
deformation of the component is small enough to be ignored. By 
comparing the deformation of components in SR group and VC group 
under the same boundary & load conditions, the fact is discovered that 
shapes of SR components are fuller while the two ends of VC ones show 
less curvature due to greater stiffness. Note that the specimen SR-4 has 
an inflection point. Hence, it is necessary to extract the coordinates of 
this inflection point and integral into two sections, as mentioned in 
Section 3.1. 

The above results demonstrate that FEA can accurately calculate the 
deformation of SR and VC under different boundary & external load 
conditions, and the theoretical calculation method can obtain the ver
tical displacement at midspan. Realization of form-finding process 
provides a solid foundation for subsequent reverse process. 

5. Design case 

5.1. Saddle-shaped curved spatial structure design process 

5.1.1. Geometric discretization method 
The design process of free-form spatial structures proposed in this 

paper has two main steps: 1) transform the complex surfaces into a 
braided mesh curve system, that is, discretizing the given surfaces into a 
certain number of curves; 2) determine the variable cross-section form 
for each rod to enable it to automatically deform into the shape of the 
corresponding curve under given boundary conditions. 

The most fundamental work is discretizing the surface into a curve 
system if one wishes to construct a spatial structure using CFRP rods. To 
describe the density of the curve system, the filling rate φ is introduced 
to quantify it as shown in Eq. (14), where S represents the surface area; n 
represents the total number of curves; t represents the hypothetical 
curve width and li represents the length of the ith curve. When the filling 
rate exceeds 30–35 %, the curve system is considered dense and tight. 

φ =

∑n

i=1
t⋅li

S
× 100%

(14) 

Table 2 
Bending test setup of nine specimens.  

Specimen Testing 
number 

Span 
(mm) 

Support 
angle (◦) 

Load conditions 

Single component 
(SR) 

SR-0 5720 - - 
SR-1 7352 45 Self-weight 
SR-2 5720 - Self-weight 
SR-3 5720 90 Self-weight 
SR-4 5720 90 Self-weight 

+ concentrated load 
Variable-section 

component (VC) 
VC-1 7352 45 Self-weight 
VC-2 5720 - Self-weight 
VC-3 5720 90 Self-weight 
VC-4 5720 90 Self-weight 

+ concentrated load  

Fig. 11. The process of the bending test.  

Table 3 
Results of Y coordinates comparison in span of the rod.  

Testing 
number 

Experiment 
(mm) 

FEA (mm) Large deformation theory 
(mm) 

SR-0 3029 3040 
(0.36 %) 

2982 (1.55 %) 

SR-1 2237 2344 
(4.78 %) 

2409 (7.69 %) 

SR-2 3034 3031 
(0.10 %) 

3225 (6.29 %) 

SR-3 2891 2856 
(1.21 %) 

3036 (5.02 %) 

SR-4 2281 2200 
(3.55 %) 

2133 (6.49 %) 

VC-1 2479 2460 
(0.77 %) 

2606 (5.12 %) 

VC-2 3201 3316 
(3.59 %) 

3373 (5.37 %) 

VC-3 2993 3007 
(0.47 %) 

3094 (3.37 %) 

VC-4 2824 2885 
(2.16 %) 

2949 (4.43 %)  
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There are two ways to discretize surfaces: 1) sample multiple points 
on the surface according to certain attributes, then connect them into 
curves by surface fitting algorithms (such as least-square algorithm); 2) 
parameterize the surface to a plane, where straight lines or curves are 
laid on, then map those lines and curves onto the original surface. The 
computational amount of the first way is lower, but the precision is less 
since only a limited number of points on the surface are used to fix a 
curve. In addition, since the connection of points into lines (or curves) 
has no additional constraints, the generated curves may be irregular. 
Whereas, the second way can accurately project the target curve onto 
the original surface based on the surface boundary while considering the 
filling rate. Noted that the surface needs to be subdivided into grids 
before parameterization, and Dirichlet energy minimization [30] or 
convex combinations [31] can be chosen for two-dimensional parame
terization. Here, Luo et al. have implemented boundary-conformed tool 
path generation based on global reparameterization using the above 

methods [32]. 
The second step of the design process, namely determining the form 

of each component has been discussed in Section 3.2. 

5.1.2. Structure design and details 
A saddle-shaped curved spatial structure is designed based on the 

construction of self-shaping CFRP structural system and segmented 
calculation method discussed in Section 3.2. The appearance of the 
structure is shown in Fig. 12. The structure has a span of 33.8 m, a 
maximum height of 22.3 m, and is composed of 107 structural compo
nents. Here, 80 of them are arranged along the span direction (L0 and L1 
layers) with the full length, while the other 27 penetrating components 
(L2 layer) integrate into a three-dimensional woven network. L0, L2, 
and L1 layers are stacked on top of each other in order from top to 
bottom. The filling rate φ is 45.11 % (where t = 62 mm, S=761.11 m2), 
which means such curve system is dense enough. 

Table 4 
Comparison of deformed shapes from bending tests and FEA results.  

The red curve represents the test result; the yellow dotted curve represents the FEA result; the blue cross represents the result of large deformation theory. 

Fig. 12. The saddle-shaped curved spatial structure.  
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The adjacent bunched CFRP rods are connected by two types of steel 
joints, as shown in Fig. 13, each with its specific advantages:  

(1) The first joint is called “embedded hidden crossing joint”, mainly 
composed of two sleeves and a connecting rod, which is used to 
connect different layers with minimum impact on the overall 
appearance of the structure. The joint is fixed by adhesive and 
using arc-shaped pads and nuts at both ends of the connecting rod 
to prevent components from slipping.  

(2) The second type is called “branching and collecting joints”, 
including a hollow cylinder and shaped tee sleeve. The hollow 
cylinder is used to realize the shunt and confluence of L1 layer 
components, and the tee sleeve is to connect components in the 
front and back edges and those of L2 layer. They can be on the 
edge of or inside the structure, which improve the synergistic 
performance of bunched CFRP rods. By designing and optimizing 
the latter one, the stress concentration problem can be solved. 

Each structural component mentioned above comprises single CFRP 
rods with a diameter of 12.2 mm. During actual construction process, 
the single CFRP rod can be wound beforehand into a circle to facilitate 
transportation. The synergy of the components is ensured by the con
necting joints described in Section 2.1. Variable cross-sections can be 
realized by changing the size of the connecting joints and the number of 
CFRP rods in the same cross-section, which can be obtained by estab
lishing a database of the deformation modes of the components with 
different cross-sections and comparing them with the designed shape. 

When using the segmented calculation method, it is necessary to 
establish the relationship between EI and the section shape of the 
component as mentioned in Section 3.2. The length of components in 
this structure are tens of meters, but the spacing of connecting joints is 
300 mm (determined in Section 5.2.1). Hence, it can be considered that 
components conform to Kirchhoff’s assumption, and the theoretical EI of 
the section can be calculated directly. 

5.2. Loading and analysis 

5.2.1. Static load and buckling analysis 
The main part of this structure is made of CFRP, only little steel is 

used in connecting joints and basis. Besides, the comparison of SR-0 and 
SR-2 shows that the impact of self-weight on the deformation of one 
single component is minimal in Section 4.2. The above experimental 
phenomenon shows that the influence of self-weight on the structure is 
very small. Considering that the main application scenario is the open- 

air entertainment platform, the structure is mainly not affected by 
other static loads except its own weight. 

During the bending process of components, they may fail due to 
CFRP material damage or local instability of rods among connecting 
joints. It is needed to avoid buckling failure of a single CFRP rod in the 
structure by theoretical analysis. The formula for calculating the Euler 
buckling capacity of a single rod is shown in Eq. (15), with a calculation 
length coefficient μ of 2. The buckling capacity can be controlled by 
adjusting the distance L between connecting joints. Thus, it is possible to 
theoretically avoid local buckling of the component by adjusting the 
value of L. Ten CFRP rods were selected as a component section for 
stability analysis. The diameters of the connecting joint and the posi
tioning hole were 48.8 mm and 12.2 mm respectively. FEA was con
ducted on the bunched CFRP rods with the maximum curvature in the 
above engineering case. The maximum compressive stress of the rod 
obtained through FEA was 171.7 MPa, as shown in Fig. 14, which is 
much lower than the compressive strength of CFRP rod. With a spacing 
of 300 mm between connecting joints, the buckling load of a single 
CFRP rod was 21.6 kN, calculated by Eq. (15), and its compressive stress 
was 185 MPa (slightly greater than 171.7 MPa). Thus, the spacing of 
300 mm in this case can ensure that the single CFRP rods will not 
experience buckling under compression. 

Pcr =
π2EI
(μL)2 =

π2EI
4L2 (15)  

5.2.2. Dynamic load analysis 
It is necessary to extract the basic mechanical model of the structure 

with external boundary & load conditions before FEA. Crossing, 
branching and collecting joints are fixed with bolts and adhesive 
mentioned in Section 5.1.2, hence considered to be rigid. The CFRP 
components are inserted into the preset holes of the ground base, so they 
are fixed supports. As can be seen from Fig. 12, the structure is also in 
contact with the first floor. Since such contact does not limit the rotation 
of the components, it can be considered as hinged. 

Snow load was not considered because the structure will be built in a 
low latitude area of China. Only the influence of wind load was evalu
ated. According to load code for the design of building structures 
(GB50009–2012), wind load can be calculated by Eq. (16), where w0 is 
fundamental wind pressure; βz is gust response coefficient; μz is wind 
pressure height variation coefficient; μs is the shape factor of wind load 

Fig. 13. Construction details of crossing joint, branching, and collecting joints.  

Fig. 14. The FEA result of bending at maximum curvature of bunched 
CFRP rods. 
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selected by Table 5. The ground roughness category shall be C (urban 
areas with dense buildings). The overlap area of components was not 
considered. Consequently, the FEA result is conservative. 

wk = βzμsμzw0 (16) 

The deformation and stress of the structure under wind load are 
shown in Fig. 15. The maximum deformation of the structure under the 
most unfavorable wind load condition was 136.6 mm, which was less 
than 1/200 of the maximum structural span, fulfilling the safety re
quirements in load code for the design of building structures 
(GB50009–2012). 

For the internal stress of the structure, the maximum stress was 
37.2 MPa (taking Mises stress as a reference), which was still far less 
than the ultimate strength of CFRP material after superimposing the 
initial stress of the bending of the component about 400 MPa. 

In summary, under the effect of wind load, the material strength and 
structural displacement can both meet the safety requirements. 

5.2.3. Force analysis of joints 
Since the focus of this paper is bending-active and self-shaping 

concepts, the stress state and mechanical properties of joints are 
briefly analyzed here. On the one hand, components in L0 and L1 layers 
are self-shaping, allowing them to bend into the designed shape without 
the restraint among components. Hence, for the first joint, there is 
essentially no force transfer. On the other hand, one side of the L2 layer 
components is inserted into the base, while the other end is overlapped 
onto the edge components, resulting in the tee sleeve subjected to ten
sion and shear forces. The equations for calculating the tensile and shear 
strength of joints are as shown in Eqs. (17) and (18), where ft, fv are the 
tensile and shear strength of steel, and At, Av are the area of the weakest 
section of joint under tension and shear forces, and Ft,max, Fv,max are the 
maximum value of the joint’s normal and shear force. Take the tee sleeve 

under wind load as an example, it is obvious that its ultimate bearing 
capacity is much greater than the maximum load. Besides, the design of 
other joints is also conservative enough to meet structural safety 
requirements. 

N = ftAt = 884kN > Ft,max = 19.1kN (17)  

V = fvAv = 571kN > Fv,max = 13.4kN (18)  

5.3. Structural construction process 

As described in Section 2.1, the bunched CFRP rods are constructed 
by separation-to-integration construction method. That is, individual 
slender straight rods are bent to a certain initial curvature prior to as
sembly, and then threaded one by one through positioning holes of 
joints to form the entire structural components. The above process 
mainly consists of the following stages:  

• Around 60 days for production, package and transportation of CFRP 
rods, and installation of steel supports.  

• Scaffolding and installing structural components of L0 layer takes 
around five days.  

• Installation of structural components of L2 layer, roughly takes five 
days.  

• Installation of structural components of L1 layer, also takes about 
five days.  

• It takes about ten days to paint fireproof and anti-UV coating and 
install light belts. 

Since the structure mainly consists of CFRP rods and connecting 
joints, the required on-site installation time is relatively short. 

Table 5 
Value of shape factor of wind load μs.  

Fig. 15. The FEA results of wind load effect.  
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6. Discussion 

This paper primarily focuses on the bending-active and self-shaping 
concepts in structural construction. Bending-active concept involves 
bending straight or flat components without concern for the final shape, 
whereas the self-shaping concept emphasizes achieving a designed 
shape after bending. To address both concepts, a CFRP self-shaping 
system is proposed that bends straight components into pre-designed 
shapes. Slender CFRP rods are bent and connected to form structural 
components, enabling self-shaping construction of complex curved free- 
form spatial structures. To validate these processes, planar bending tests 
are conducted on a variable section CFRP rod, comparing the results 
with simulations based on large deformation theory and FEA. Addi
tionally, a practical case study is presented, focusing on the construction 
of a saddle-shaped canopy to demonstrate the feasibility of the design 
method and self-shaping system. It is important to note the following 
considerations:  

• In the form-finding method presented in this paper, the large 
deformation theory relies on knowledge of the boundary conditions 
and reaction forces of the component. However, when the internal 
force conditions at a specific location within the component are 
unknown, it becomes challenging to compute the deformation at that 
point using the large deformation theory alone. Therefore, the large 
deformation theory is often employed in conjunction with FEM to 
address practical engineering problems. 

• Regarding the inverse form-finding method, the segmented calcula
tion method is employed in this paper. Although this method has low 
computational complexity and is straightforward to implement, it 
cannot accurately achieve self-shaping, as the actual deformation 
shape can deviate from the designed curve. Future research aims to 
enhance the precision of the inverse form-finding process by 
employing machine learning methods based on Recurrent Neural 
Network, to be specific, Long Short-term Memory (LSTM).  

• In the experimental section in this paper, the effectiveness of the 
large deformation theory and FEA is validated through bending tests. 
The coefficient of determination R2, as mentioned in Section 4.2, 
indicates that the deviation between the FEA results and the exper
imental data is minimal, with an approach towards 1. Besides, the 
midspan coordinates obtained from the large deformation theory are 
generally in good agreement with the experimental results. The in
fluence of self-weight on the component’s deformation is negligible, 
as evidenced by the comparison of SR-0 and SR-2. However, it is 
important to note that the bending-active construction method in
troduces significant stress to the components during the bending 
process. Ai et al. conducted long-term tensile creep tests on CFRP 
cables, showing that they had a million-hour creep coefficient 
ranging from 6.1 % to 7.9 % at stress levels from 0.3 fu to 0.7 fu 
(where fu represents the characteristic tensile strength) [33]. 
Therefore, the long-term creep effect of CFRP on the whole structure 
can be ignored because of its low creep coefficient.  

• In the design demonstration of the saddle-shaped spatial structure, 
the individual GFRP rods are required to sequentially pass through 
connecting joints. As the number of joints increases, it becomes 
increasingly difficult to manually assemble the whole structure. 
Hence, it is imperative to further optimize the construction of joints 
to address this issue and facilitate the construction process. Besides, 
FEA on joints should be conducted to further ensure their safety in 
practical application.  

• For the aforementioned spatial structure, wind load is the dominant 
dynamic excitation. Numerical results have validated that the sum of 
initial stress and maximum stress under the wind load is significantly 
lower than the ultimate strength of CFRP material, proving its safety. 
However, in addition to considering wind load, it is also necessary to 
evaluate its safety and reliability under other conditions such as 
earthquakes in future designs. 

7. Conclusions 

This paper introduces the construction of bunched CFRP rods that 
meets the variable cross-section requirements and the “separation-to- 
integration” construction process based on the bending-active concept. 
The following conclusions can be draw from this research:  

• The proposed bunched CFRP rods can serve as primary load-bearing 
elements for arch bridges, landscape structures (such as canopies, 
park pavilions, mosques), and large-span space structures (including 
museums, libraries, sports venues), making them well-suited for 
constructing large-scale curved surface structures. Due to the use of 
CFRP composite materials, these components offer advantages over 
traditional structures, including lightweight, high design flexibility, 
and low maintenance requirements.  

• The form-finding method based on large deformation theory and FEA 
is effective in determining the deformed shape of the components 
under known conditions of boundary constraints, external loading, 
and sectional forms. This method offers benefits such as small errors 
and high reliability. 

• The inverse form-finding method based on segmented solutions en
ables efficient determination of the sectional forms of components, 
given the expected shape and considering the boundary constraints 
and external loading conditions. However, this method exhibits 
larger errors due to the sudden discontinuity in the cross-section.  

• The results of the component bending tests align well with the 
theoretical results, confirming the effectiveness of the form-finding 
methods. Additionally, the experimental findings indicate that 
achieving high curvatures in specific areas of the component cannot 
be solely accomplished by adjusting stiffness. Therefore, sleeve 
construction can be employed to achieve the desired effects.  

• Through static and dynamic load analyses, the safety and reliability 
of the saddle-shaped spatial structure designed in this study have 
been preliminarily validated. Furthermore, the effectiveness of the 
proposed bunched CFRP rods and the “separation-to-integration” 
construction method has been verified. 

Conclusively, the proposed system offers several advantages: strong 
designability, low transportation cost, rapid construction, polished 
appearance, and low maintenance requirements. Future research will 
prioritize achieving high-precision inverse form-finding processes 
through LSTM, optimizing the construction of connecting joints, and 
studying long-term properties of the components. 
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